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This paper studies asset pricing in a setting in which idiosyncratic risk in human capital

is not fully insurable. Firms use long-term contracts to provide insurance to workers, but

neither side can commit to these contracts; furthermore, worker-firm relationships have

endogenous durations owing to costly and unobservable effort. Uninsured tail risk in labor

earnings arises as a part of an optimal risk-sharing scheme. In the general equilibrium,

exposure to the resulting tail risk generates higher risk premia, more volatile returns,

and variations in expected returns across firms. Model outcomes are consistent with

the cyclicality of factor shares in the aggregate, and the heterogeneity in exposures to

idiosyncratic and aggregate shocks in the cross section.
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1 Introduction

A key challenge for macro-asset pricing theories is to account for the large magnitude of

equity premia and their substantial variations over time and across firms. In this paper, we

provide an incomplete-markets-based asset pricing model that uses limited commitment and

moral hazard as microfoundations to address these patterns in risk premia. Uninsured tail

or downside risk in labor earnings arises as an outcome of optimal risk-sharing arrangements.

Time variation in that tail risk drives aggregate risk prices and cross-sectional risk exposures.

The model is also consistent with the cyclicality of factor shares in the aggregate, and

the heterogeneity in exposures to idiosyncratic and aggregate shocks in the cross section.

Overall, the paper provides a unified view of labor market risk and asset prices within a

general equilibrium optimal contracting framework.

The setup consists of two types of agents: capital owners and workers. Capital owners

are well diversified and use long-term compensation contracts to provide insurance to

workers against idiosyncratic fluctuations in their human capital. Two agency frictions

distinguish our paper from standard representative agent asset pricing models. First, neither

firm owners or workers can commit to contracts that yield continuation values lower than

their outside options. Second, worker-firm relationships have endogenous durations owing to

costly and unobservable effort. We embed these contracting frictions in a general equilibrium

setting with aggregate shocks and then study the resulting labor market and asset pricing

implications.

While worker and firm limited commitment constraints are required to match earning

dynamics, downside risk in labor earnings, a key feature in the data, is driven mainly by

the firm-side limited commitment and moral hazard. Compensation contracts providing

perfect risk sharing would insure workers against idiosyncratic labor productivity shocks.

But when firms cannot commit to negative net present value projects, large drops in labor

productivity are accompanied by reductions in worker earnings. Additionally, the moral

hazard problem links a firm’s retention effort to the present discounted value of cash flows

it expects from a worker. In periods during which future values are low, because of either

low human capital or high discount rates, firms exert low effort and workers suffer higher

separation risk and loss of earnings from human capital depreciation.

In the general equilibrium, exposure to downside risk drives several of our asset pricing

results. First, it generates a stochastic discount factor that is more volatile than that in an

otherwise identical economy without agency frictions. With recursive utility and persistent

countercyclical idiosyncratic risks, the prospect of a future lack of risk sharing raises workers’
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current marginal utilities. The optimal risk-sharing scheme compensates this by allocating a

higher share of aggregate output from capital owners to workers. Therefore, the labor share

moves inversely with aggregate output. The countercyclicality of labor share translates into

a procyclical consumption share of all unconstrained investors, including the capital owners.

This amplifies risk prices. In our quantitative analysis, we find that Sharpe ratios are more

than doubled owing to agency frictions.

Since some tail risk comes from separations, there is a feedback between limited

commitment and moral hazard. The moral hazard problem links firms’ retention efforts

to the valuation of future cash flows they expect from workers. Higher expected returns

during recessions lowers worker valuations and results in countercyclical separations. This

feature of our model supplements a large literature – for example, Hall (2017) – which

argues that discount rate variations are central in driving unemployment fluctuations. In

our model, higher separations exacerbate tail risk and therefore the need for capital owners

to provide insurance against aggregate shocks. This further raises equilibrium discount

rates and amplifies risk prices.

Second, without relying on heteroskedastic aggregate shocks, our model produces

substantial predictable variations in the risk premium especially over long horizons. The

dynamics of the pricing kernel depend on the fraction of firms that are likely to hit their

limited commitment constraint. This introduces persistent variations in the volatility of the

stochastic discount factor and makes returns predictable. Regressing returns on a claim to

aggregate consumption on price-dividend ratios gives R-squares which are significant and

increasing in horizon. Time variation in discount rates also amplifies the response of asset

prices to aggregate shocks and further elevates the market equity premium.

Third, the above economic mechanism also results in a significant heterogeneity in the

cross section of expected equity returns and sensitivities of wage payments to firm-level

shocks. Under the optimal contract, labor compensation insures workers against aggregate

productivity shocks and is countercyclical, making the residual capital income procyclical

and more exposed to aggregate shocks. This delivers a form of operating leverage at the

firm level. In particular, firms that have experienced adverse idiosyncratic shocks have

a higher fraction of their value promised to workers and are therefore more sensitive to

aggregate shocks. As a result, they have lower valuation ratios and higher expected returns.

Furthermore, firms with large obligations to workers are more likely to hit the firm-side

limited commitment constraint and are more likely to lower wage payments in response to

an adverse idiosyncratic shock. We test these implications using CRSP/Compustat panel

data and show that firm-level measures of labor share predicts both future returns and
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pass-throughs of firm-level shocks to wage payments.

Lastly, the risk-sharing arrangement in our model is consistent with the cross-sectional

variation in wealth exposure to aggregate shocks. By analyzing the consumption-replicating

portfolio, we find that wealthy agents endogenously hold higher fractions of wealth in the

stock market, while low-income workers invest more in the riskless asset. This is because

workers who realize favorable productivity shocks are typically unconstrained, and therefore

their marginal rate of substitution is equalized with those of well-diversified capital owners

whose consumption is more exposed to aggregate shocks. These outcomes are in line with

observations in the Survey of Consumer Finances.1

Related literature This paper builds on the literature on limited commitment. Kehoe

and Levine (1993) and Alvarez and Jermann (2000) develop a theory of incomplete

markets based on one-sided limited commitment. On the asset pricing side, Alvarez and

Jermann (2001) and Chien and Lustig (2010) study the asset pricing implications of such

environments. Most of the above theory builds on the Kehoe and Levine (1993) framework

and implies that agents who experience large positive income shocks have an incentive to

default because they have better outside options. As a result, positive income shocks cannot

be insured, while downside risk in labor income is perfectly insured. Our paper develops a

model of two-sided lack of commitment as in Thomas and Worrall (1988) and augments it

with moral hazard. We add aggregate shocks and focus on the general equilibrium effects

of the firm-side limited commitment and moral hazard that have not been studied before.2

Our paper is related to asset pricing models with exogenously incomplete markets.

Krueger and Lustig (2010) provide theoretical conditions under which the presence

of idiosyncratic risk is irrelevant for the market price of aggregate risks. Mankiw

(1986) and Constantinides and Duffie (1996) demonstrate how countercyclical volatility

in incomes amplifies aggregate risk premia in the general equilibrium. Schmidt (2015)

and Constantinides and Ghosh (2014) calibrate such incomplete markets models to recent

administrative data on earnings and show that higher moments of labor income shocks

require a significant risk compensation. For tractability, the Constantinides and Duffie

(1996) framework requires an assumption of independently distributed shocks to income

1Recent work by Fagereng et al. (2016) uses administrative data on wealth and income from Norway to
document that individuals with more uninsured labor income risk hold less risky portfolios.

2The firm-side limited commitment problem in our model has a similar structure to those studied in
Bolton et al. (2014) and Ai and Li (2015). Recently several papers such as Tsuyuhara (2016), Abraham
et al. (2017), and Lamadon (2016) study versions of long-term wage contracts with moral hazard. Lamadon
(2016) allows for richer features such as worker and firm complementarities, on-the-job search, and search
frictions. However, none of these papers allow for aggregate risks or study asset pricing.
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growth that rules out the trading of financial assets in equilibrium. Heaton and Lucas

(1996) and Storesletten et al. (2007) are among the few papers that depart from the no-

trade equilibria to study risk premia in quantitative incomplete markets models.

In contrast to the above papers, we take an optimal contracting approach to microfound

incomplete markets and use empirical evidence on labor earnings dynamics to restrict the

choice of the parameters governing agency frictions. Our model allows the trading of a rich

set financial assets. We explicitly characterize history dependence of labor earnings under

the optimal contract. We show that the model is consistent with the empirical evidence on

the cross-sectional variation in the exposures of earnings and wealth to idiosyncratic and

aggregate shocks.

Theoretical predictions of our model are also consistent with a recent literature that

emphasizes the importance of labor share dynamics in understanding the equity market.

Our operating leverage results connect to insights in Danthine and Donaldson (2002) and

Berk and Walden (2013). More recently, Favilukis and Lin (2016b) use models with

sticky wages to demonstrate how countercyclical movements in labor shares helps explain

equity and credit risk premia in production economies. The implication of our model

that variations in labor shares can account for a large fraction of aggregate stock market

variations is consistent with the evidence documented in Greenwald et al. (2014) and Lettau

et al. (2014).

Our computational method builds on Krusell and Smith (1998). Using techniques

contributed by the dynamic contracting literature such as Atkeson and Lucas (1992), we

represent equilibrium allocations recursively by using a distribution of promised values as a

state variable. However, in contrast to those papers, our environment has aggregate shocks

and the distribution of promised values responds to such shocks even in an ergodic steady

state. As in Krusell and Smith (1998), we approximate the forecasting problem facing

agents.

The paper is organized as follows. We describe the environment – preferences,

technology, and the contracting frictions – in section 2. In section 3, we discuss the optimal

contract. In section 4, we derive the asset pricing implications that arise from agency

frictions. Finally, in sections 5 and 6 we present quantitative implications after calibrating

to several aggregate and cross-sectional facts. Section 7 concludes.
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2 Model

We start with the physical and contracting environment.

2.1 Setup

Demographics We consider a discrete time economy with t = 0, 1, . . .. There are two

groups of agents: a unit measure of capital owners and a unit measure of workers. Members

of both groups have Epstein-Zin preferences with a common risk aversion γ and a common

intertemporal elasticity of substitution (IES) ψ.

In each period, workers die with probability 1− κ, and a measure κ of new workers are

born. This specification guarantees that the total measure of workers equals one at all times.

Upon birth, a worker is endowed with one unit of human capital and has an opportunity

to match with a firm in a market where firms offer competitive long-term compensation

contracts. Workers produce after being matched with a firm whose compensation contract

they accept.

Production and human capital Production is organized within N firms.3 We use i to

index workers and Ft(i) ∈ {0, 1, . . . N} to indicate the firm where worker i is employed at

time t, with the understanding that Ft(i) = 0 if the worker is unemployed. If employed in

period t, worker i with human capital hi,t produces output

yi,t = Ythi,t,

where Yt is aggregate productivity. We assume Y0 = 1, and for t ≥ 1

lnYt+1 = lnYt + gt,

where gt is a finite state Markov process with a one-step transition matrix {π (g′|g)}g,g′ .

A worker-firm match continues into the next period with probability θi,t. With

probability 1− θi,t, the match dissolves and the worker becomes unemployed. Conditioning

on survival of the match, the worker’s human capital evolves according to

hi,t+1 = hi,te
ηFt(i),t+1+εi,t+1 , (1)

3We assume N is large so that a law of large numbers applies.
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where the firm component ηFt(i),t is i.i.d. across firms but common to all workers in a firm,

and the worker-specific shock, εi,t, is i.i.d. across workers. The shocks ηFt(i),t and εi,t

are independent of each other after conditioning on the aggregate shock gt. We normalize

E [eεi,t |gt] = 1 and E [eηFt(i),t |gt] = 1.

An employed worker can become unemployed either because the match dissolves

exogenously with probability 1 − θi,t or because the worker chooses to quit. The human

capital of an unemployed worker follows

hi,t+1 = λhi,t, (2)

where the parameter λ < 1 describes human capital obsolescence when the worker is

unemployed. In each period, unemployed workers receive unemployment benefit bYthi,t,

where b is a constant.

We define {ζi,t}∞t=0 to be the stochastic process that records the birth, death, and

unemployment shocks experienced by worker i, with the convention that ζi,t = Ft (i) if

worker i is employed by firm Ft (i) in period t, and ζi,t = −1 if worker i is not alive in

period t. We use zi,t =
(
gt, ηFt(i),t, εi,t, ζi,t

)
to denote time t shocks for a worker and

zti =
(
gt, ηtFt(i), ε

t
i, ζ

t
i

)
=
{
gs, ηFs(i),s, εi,s, ζi,s

}t
s=0

to denote the history of shocks up to time

t. Because all workers are endowed with one unit of human capital at birth, given the

history of shocks, zti , we can recover hi,t for all t using equations (1) and (2), which we

denote as ht(z
t
i).

Matching and separation We assume that firms affect the survival probability of a

match with a worker by exerting costly effort. We denote the effort for keeping worker i at

time t as θi,t and assume that the cost of effort per unit of output is specified by a function

A (θ) with strictly positive first three derivatives for all θ ∈ (0, 1).

Upon separation, a worker enters into unemployment. In each period, an unemployed

worker receives an employment opportunity with probability χ ∈ (0, 1). An employment

opportunity enables a worker to access a labor market where firms offer long-term contracts.

We assume that there is no cost for posting vacancies and all firms can compete for new

workers.

A contract specifies both the compensation to the worker C ≡
{
Ct
(
zt
)}∞

t=0
and the

employer’s effort for keeping the worker θ ≡
{
θt
(
zt
)}∞

t=0
, as functions of the history

of shocks. We denote a contract using 〈C,θ〉. In principle, we could adopt a more

general contracting space that allows a worker to be paid by all N firms. However, it
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is straightforward to show that because of limited commitment (which we introduce next),

only the employer firm will pay the worker and exert a nontrivial retention effort. Hence,

without loss of generality, 〈C,θ〉 needs only to specify the payment and retention effort

between the worker and his employer as functions of the worker’s history.4

Capital owners Capital owners are endowed with ownership of firms and have no labor

income. There is a competitive market where capital owners can trade a full set of one-

period ahead Arrow securities. We use Xt(g
t) to denote the aggregate consumption of the

capital owners and Λt(g
t) to denote the stochastic process for state prices.

Contracting frictions Let 〈C,θ〉 be a contract and let Vt(z
t|C,θ) be the value of the

contract to the employer of a worker with history zt. The values
{
Vt(z

t|C,θ)
}∞
t=0

satisfy

the recursion

Vt(z
t|C,θ) =

[
Ytht(z

t)
[
1−A

(
θt
(
zt
))]
− Ct

(
zt
)]

+κθt
(
zt
)
E
[

Λt(g
t+1)

Λt(gt)
Vt+1(z

t+1|C,θ)

∣∣∣∣ zt
]
.

(3)

Because shocks are i.i.d. across firms and workers, the value function depends only on the

history and not the identity of the worker.

Let U∗t (zt) be the maximum utility a worker can achieve in the labor market at time t at

history zt by matching with a firm. The utility of an unemployed worker, denoted U t(z
t),

can be constructed recursively according to

U t(z
t) =

[
(1− β) (bYtht(z

t))
1− 1

ψ + βM
1− 1

ψ

t (zt)

] 1

1− 1
ψ , (4)

where Mt(z
t) =

(
κE
[

(1− χ)U
1−γ
t+1 (zt+1) + χU∗1−γt+1 (zt+1)

∣∣∣ zt
]) 1

1−γ
is the certainty

equivalent of the next period utility.

Given the contract 〈C,θ〉, the utility of a worker at history zt satisfies

Ut(z
t|C,θ) =

[
(1− β)Ct

(
zt
)1− 1

ψ + βMt(z
t)
1− 1

ψ

] 1

1− 1
ψ (5)

with Mt(z
t) =

(
κE
[
θt
(
zt
)
U1−γ
t+1 (zt+1|C,θ) +

(
1− θt

(
zt
))
U

1−γ
t+1

(
zt+1

)∣∣∣ zt
]) 1

1−γ
.5

4To simplify notation, we assume that workers with the same history receive the same contract. This
assumption does not affect the quantitative implications of our model since we focus on the steady state.
Conceptually, this assumption can be easily generalized by indexing workers by their time-0 discounted
utility, as in Atkeson and Lucas (1992).

5The death rate κ of workers does not affect the relative discount rates of firms and workers as κ appears
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There are two types of agency frictions. First, neither firms nor workers can fully

commit. At the beginning of each period, before production takes place, firms and workers

have an opportunity to terminate relationship unilaterally and take their outside options.

Second, firms’ choices of effort {θit}i,t are observable neither to workers nor to any other

firms. The presence of agency frictions imposes incentive compatibility constraints on the

contracts offered, which we describe next.

Upon termination of the contract, the firm can either keep the position vacant or hire

a new worker. Perfect competition on the labor market and no cost for keeping or posting

vacancies imply that the value of firms’ outside options is zero. Thus, the firm-side limited

commitment constraint on continuation values becomes6

Vt(z
t|C,θ) ≥ 0 ∀zt. (6)

If a worker chooses to separate after history zt, he becomes unemployed and obtains

utility U t(z
t). Therefore, the worker-side limited commitment constraint becomes

Ut(z
t|C,θ) ≥ U t(zt) ∀zt. (7)

Finally, the fact that θ is not observable to workers implies that the choice of θ must

be incentive compatible from the firm’s perspective. That is, ∀zt, ∀θ̃ ∈ [0, 1]7

Vt(z
t|C,θ) ≥

[
Ytht(z

t)
[
1−A

(
θ̃
)]
− Ct

(
zt
)]

+ κθ̃E
[

Λt(g
t+1)

Λt(gt)
Vt+1(z

t+1|C,θ)

∣∣∣∣ zt
]
. (8)

Given a pricing kernel
{

Λt(g
t)
}
t

and maximum utilities
{
U∗t (zt)

}
t

that workers can

obtain on the labor market, we can construct firm values
{
Vt(z

t|C,θ)
}
t
, and worker utilities{

Ut(z
t|C,θ)

}
t
, for all histories zt under a contract 〈C,θ〉. We next define a feasible contract.

Definition 1. A contract 〈C,θ〉 is said to be feasible with respect to
{

Λt(g
t)
}
t
,
{
U∗t (zt)

}
t

if it satisfies limited commitment constraints (6) and (7) and incentive compatibility

constraints (8), where the worker’s outside option U t(z
t) in equation (7) satisfies (4).

in both the firm’s value function in equation (3) and the worker’s utility recursion in equation (5).
6The setting with firm-side limited commitment can also be interpreted as an environment in which firms

borrow subject to an endogenously specified limit on collateral. In particular, our formulation is equivalent
to one where only the NPV of the firm’s cash flow can be used as collateral. For models of limited collateral,
see Lustig and Van Nieuwerburgh (2005) and Rampini and Viswanathan (forthcoming). We thank an
anonymous referee for pointing out this connection.

7We rely on the standard result in dynamic mechanism design that there is no profitable deviation in the
dynamic environment if and only if one-step deviations are not profitable.
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An equilibrium consists of state prices
{

Λt(g
t)
}
t
, the maximum utility

{
U∗t (zt)

}
t

that

a worker with an employment opportunity can achieve, optimal contracts
〈
Ĉ,θ̂

〉
=

{
Ĉt
(
zt
)
, θ̂t
(
zt
)}∞

t=0
that maximize firm value among all feasible contracts, and a

consumption process for the capital owners
{
X
(
gt
)}

t
. Below, we define and study a

recursive competitive equilibrium.

2.2 Recursive Formulation

State variables Equilibrium Arrow prices, workers’ outside valuations, and optimal

contracts for each worker-firm pair depend on past histories of aggregate as well as firm-

and worker-level idiosyncratic shocks. We use homotheticity properties of preferences and

technology to construct a recursive competitive equilibrium where the history of aggregates

can be summarized by state variables (φ, g,B) and the history for an individual worker can

be summarized by a single state variable u. Here, φ is a one-dimensional distribution of

agent types, g is the Markov state of aggregate productivity, B is the total compensation to

all unemployed workers normalized by aggregate productivity, and u is the current-period

continuation utility normalized by human capital and aggregate productivity. That we

ultimately need to keep track of only a one-dimensional distribution as a state variable is

key for our quantitative analysis.

Let ut be a worker’s period t utility Ut divided by human capital and aggregate

productivity Ytht. Given a feasible contract 〈C,θ〉, the individual state variable ut can

be constructed from zt and denoted as ut = ut
(
zt
∣∣C,θ

)
. The aggregate state variables φt

and Bt can also be constructed recursively from the history of aggregate shocks, which we

denote as φt
(
gt
)

and Bt
(
gt
)
. In our construction, U∗t (zt) and U t(z

t) take the form of

U∗t (zt) = u∗
(
φt
(
gt
)
, gt, Bt

(
gt
))
ht(z

t)Yt, U t(z
t) = u

(
φt
(
gt
)
, gt, Bt

(
gt
))
ht(z

t)Yt.

Equation (4) implies the following relationship between u (φ, g,B) and u∗ (φ, g,B):

u (φ, g,B) =
[
(1− β) b

1− 1
ψ + β [λm (φ, g,B)]

1− 1
ψ

] 1

1− 1
ψ , (9)

with

m (φ, g,B) ≡
(
κE
[
e(1−γ)g

′
{

(1− χ)u1−γ
(
φ′, g′, B′

)1−γ
+ χu∗1−γ

(
φ′, g′, B′

)}∣∣∣ g
]) 1

1−γ
.

10



Workers’ utility can also be represented in normalized terms as

Ut(z
t|C,θ) = ut

(
zt
∣∣C,θ

)
ht
(
zt
)
Yt.

Recursive optimal contracting Let Λ (g′|φ, g,B) be one-period-ahead Arrow security

price, s′ = (g′, η′, ε′) the vector of the realization of next-period shocks, Ω(ds′|g) the

distribution of s′ given the current aggregate state g, and (g′, φ′, B′) the next-period

aggregate states. The normalized firm value v (u|φ, g,B) satisfies a Bellman equation

v (u|φ, g,B) = max
c,θ,{u′(s′)}s′

1− c−A(θ)+

κθ
�

Λ (g′|φ, g,B) eg
′+η′+ε′v (u′ (s′) |φ′, g′, B′) Ω(ds′|g),

(10)

where the maximization is subject to

u =
[
(1− β) c

1− 1
ψ + βm

1− 1
ψ (u|φ, g,B)

] 1

1− 1
ψ , (11)

v
(
u′
(
s′
)∣∣φ′, g′, B′

)
≥ 0, for all s′, (12)

u′(s′) ≥ λu
(
φ′, g′, B′

)
, for all s′, (13)

A′(θ) = κ

�
Λ
(
g′|φ, g,B

)
eg
′+η′+ε′v

(
u′
(
s′
)
|φ′, g′, B′

)
Ω(ds′|g), (14)

and m(u|φ, g,B) in the promise-keeping constraint (11) is defined as

m (u|φ, g,B) =

{
κ

�
e(1−γ)(g

′+η′+ε′)
[
θ
[
u′
(
s′
)]1−γ

+ (1− θ)
[
λu
(
φ′, g′, B′

)]1−γ]
Ω(ds′|g)

} 1
1−γ

.

Inequalities (12) and (13) are the recursive counterparts of the limited commitment

constraints (6) and (7). Equation (14) is the first-order necessary condition for firms’ choice

of retention effort. Because the cost function A (θ) is strictly convex, first-order conditions

(14) are equivalent to (8) and, therefore, necessary and sufficient for incentive compatibility.

We label the above maximization problem as P1.

Let xt = Xt(gt)
Yt

be the normalized consumption of the capital owners. Given a

policy function x (φ, g,B), capital owners’ utility, which we denote as w (φ, g,B), can be

constructed from

w (φ, g,B) =
[
(1− β)x (φ, g,B)

1− 1
ψ + βn

1− 1
ψ (φ, g,B)

] 1

1− 1
ψ , (15)

with the certainty equivalent n (φ, g,B) =
{
κ
∑

g′ π (g′|g) e(1−γ)g
′
w1−γ (φ′, g′, B′)

} 1
1−γ

.
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Finally, we describe the construction of the aggregate distributional state variable

φ, which we will refer to as the “summary measure.” Let Φj (du, dh) denote the joint

distribution of (u, h) for workers in firm j and Φ0 (dh) the distribution of human capital

of unemployed workers.8 In general, {Φj}Nj=0 is a state variable in the construction of a

recursive equilibrium because the resource constraint,

Y

� �
bhΦ0 (dh) + Y

N∑

j=1

� �
[c (u) +A(θ)]hΦj (du, dh) +X = Y

N∑

j=1

� �
hΦj (du, dh) ,

depends on {Φj}Nj=0. Let c (u|φ, g,B) attain the optimal value in the problem P1. The

total compensation to all workers

Y

N∑

j=1

� �
c (u)hΦj (du, dh) = Y

�
c (u)

N∑

j=1

[�
hΦj (dh|u)

]
Φj (du) ,

where we decompose the joint distributions into a marginal distribution and a conditional

distribution: Φj (du, dh) = Φj (dh|u) Φj (du). We define the summary measure by

φ (du) ≡ ∑n
j=1

�
hΦj (dh|u) for all u. For a given h, the term

∑N
j=1 Φj(du, dh) is the

joint distribution of (u, h) across all firms, and thus φ(du) is the average human capital of

employed workers of type u. Total consumption equals Y
�
φ (du).

We define the total compensation to all unemployed workers normalized by aggregate

productivity as B =
�
bhΦ0 (dh). The resource constraint can be written as

B +

�
[c (u|φ, g,B) +A(θ(u|φ, g,B))]φ (du) + x (φ, g,B) =

�
φ (du) . (16)

The above procedure reduces the N + 1 two-dimensional distributions {Φj}Nj=0 into a one-

dimensional measure φ and a scalar B. This greatly simplifies our analysis.

Recursive competitive equilibrium Equilibrium can be constructed in two steps. In

the first, we obtain policy functions c (u|φ, g,B), θ (u|φ, g,B), {u′ (u, s′|φ, g,B)}s′ by

solving problem P1. In the second, we use the policy functions to construct the law of

motion of the endogenous state variables u, φ, and B. The summary measure φ has a

continuous density on [λu (φ, g,B) , u∗ (φ, g,B)) and the density of next period summary

8We do not need to assign a promised utility to unemployed workers because their compensation depends
only on their human capital.
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measure φ′ in state g′ is

φ′ (dũ) = (1− κ)

�
θ (u|φ, g,B)

[�
eε
′+η′f

(
ε′, η′

∣∣ g′
)
I{u′(u,s′|φ,g,B)∈dũ}dε

′dη′
]
φ (du) ,

(17)

for ∀ũ ∈ [λu (φ′, g′, B′) , u∗ (φ′, g′, B′)), where I is the indicator function. Entry of newly

employed workers puts a mass point on u∗ (φ, g,B) and φ′ (u∗ (φ′, g′, B′)) = κ+ (1− κ)λBb .

The law of motion for B is given by

B′ = κλ

[
B(1− χ) + b

�
[1− θ(u|φ, g,B)]φ (u) du

]
. (18)

Definition 2. A recursive competitive equilibrium consists of state prices {Λ (g′|φ, g,B)}g′,
workers’ outside option u(φ,g,B), the utility u∗ (φ, g,B) of newly employed workers, firm

values v (u|φ, g,B) and policy functions c (u|φ, g,B), θ (u|φ, g,B), {u′ (u, s′|φ, g,B)}s′,
consumption share of capital owners x (φ, g,B), and a law of motion for (φ,B), such that

1. The stochastic discount factor Λ (g′|φ, g,B) is consistent with capital owners’

consumption:9

Λ
(
g′
∣∣φ, g,B

)
= β

[
x (φ′, g′, B′) eg

′

x (φ, g,B)

]− 1
ψ
[
w (φ′, g′, B′) eg

′

n (φ, g,B)

] 1
ψ
−γ

, (19)

where capital owners’ utility w (φ, g,B) and certainty equivalent n (φ, g,B) are defined

in equations (15).

2. Given Λ (g′|φ, g,B), the law of motion for (φ,B), and a worker’s outside value

u(φ,g,B), the value function and the policy functions solve problem P1.

3. Given the policy functions, the law of motion for (φ,B) satisfies (17) and (18).

4. Functions u (φ, g,B) and u∗ (φ, g,B) satisfy (9), and for all (φ, g,B),

u∗(φ, g,B) = argmaxũv (ũ|φ, g,B) (20)

s.t. v (ũ|φ, g,B) ≥ 0

5. The policy functions, the summary measure φ, and the compensation for unemployed

workers B satisfy the resource constraint (16).

9For brevity,we specify the stochastic discount factor as a function of the capital owners’ consumption
directly without explicitly specifying the capital owners’ consumption and portfolio problem. Because the
capital owners are well diversified, their consumption and investment choices are standard.
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3 The Optimal Contract

With full commitment, firms can perfectly insure workers against idiosyncratic shocks and

thus assure that workers’ continuation utilities do not respond to idiosyncratic shocks, that

is, eε
′+η′u′ (g′, η′, ε′, u|φ, g,B) is equalized across all possible realizations of η′ and ε′. When

0 is a possible realization of η′ + ε′, this optimal risk-sharing condition can be written as

u′
(
u, g′, η′, ε′

∣∣φ, g,B
)

= e−ε
′−η′u′

(
u, g′, 0, 0

∣∣φ, g,B
)
,∀g′, η′, ε′. (21)

Thus, under perfect risk sharing, the elasticity of normalized utility with respect to

idiosyncratic shocks is −1.

Under limited commitment, equation (21) cannot hold for all η′, ε′. For example, a

sufficiently negative realization of η′ or ε′ will make the firm-side limited commitment

constraint (12) bind. Perfect risk sharing means that workers consume the same fraction

of aggregate consumption at all times. Keeping an extremely unproductive worker is a

negative net present value undertaking for the firm, since the cash flow produced by the

worker is not enough to pay for his promised wages.10 The next proposition summarizes

properties of the optimal contract.

Proposition 1. Suppose that there exists an equilibrium in which the stochastic discount

factor and the law of motion for aggregate state variables satisfy condition (A.1) in

Appendix A1. Then there exist ε(u, g′|φ, g,B) and ε(u, g′|φ, g,B) such that ε(u, g′|φ, g,B) <

ε(u, g′|φ, g,B) and

1. For all ε′ + η′ ∈ (−∞, ε(u, g′|φ, g,B)) ∪ (ε(u, g′|φ, g,B), ∞),

u′(u, s′|φ, g,B) =




u∗ (φ′, g′, B′) ε′ + η′ ≤ ε(u, g′|φ, g,B),

λu (φ′, g′, B′) ε′ + η′ ≥ ε(u, g′|φ, g,B).
(22)

2. For all ε′ + η′ ∈ [ε(u, g′|φ, g,B), ε(u, g′|φ, g,B)], u′(s′, u|φ, g,B) is strictly decreasing

in ε′ + η′ and satisfies

[
x (φ′, g′, B′)
x (φ, g,B)

]− 1
ψ
[
w (φ′, g′, B′)
n (φ, g,B)

] 1
ψ
−γ (

1 +
ι (u|φ, g,B)

θ (u|φ, g,B)

)

= e−γ(η
′+ε′)

[
c (u′ (u, s′|φ, g,B) , φ′, B′)

c (u|φ, g,B)

]− 1
ψ
[
u′ (u, s′|φ, g,B)

m (u|φ, g,B)

] 1
ψ
−γ
, (23)

10More formally, the function v(u|φ, g,B) is bounded above by the first best vFB(u|φ, g,B), which is linear
in u with a slope of −1. Hence, as u approaches ∞, firm values will be negative.
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where ι (u|φ, g,B) > 0 is given in Appendix A1.

3. Firms’ optimal effort θ(u|φ, g,B) is decreasing in u.

Proof. See Appendix A1.

The above proposition has several implications. First, extremely large and extremely

small realizations of ε′ and η′ both lead to binding limited commitment constraints and

therefore cannot be hedged. Equation (21) suggests that to provide insurance to workers,

positive realizations of η′ + ε′ must be offset by decreases in u′ (u, s′|φ, g,B). The limited

commitment constraint on the worker’s side, u (s′) ≥ λu (φ′, g′, B′), imposes a lower bound

on u(s′), which means that unnormalized continuation utility must increase after extremely

large realizations of η′ + ε′. High promised values are met with higher future wages. This

feature of our setting is similar to that in Harris and Holmstrom (1982), Kehoe and Levine

(1993), and Alvarez and Jermann (2000). In contrast to these papers in which workers are

perfectly insured against downside risk, the limited commitment constraint on the firm side

implies that a sufficiently negative η′ + ε′ such that (12) binds will result in permanent

reductions in compensation.

Second, in the interior of (ε(u, g′|φ, g), ε(u, g′|φ, g)), the intertemporal marginal rate of

substitution of a worker does not depend on idiosyncratic shocks η′ and ε′. This resembles

the perfect risk-sharing condition (21). Because the consumption policy c (u|φ, g,B) is

strictly increasing in u, the optimal risk-sharing condition (23) implies that normalized

continuation utilities u′ (u, s′|φ, g,B) are strictly decreasing in η′ + ε′. As a result, the

promised value u for a worker-firm pair that realizes a history of negative productivity

shocks will drift upwards.

Incentive compatibility constraint (14) requires that the marginal cost A′(θ) of retaining

the worker equals its marginal benefit, the present value of the cash flow that the worker

can bring to the firm, κ
�

Λ (g′|φ, g,B) eg
′+η′+ε′v (u′ (s′) |φ′, g′, B′) Ω(ds′|g). Firm effort θ

is smaller than its first-best counterpart because the social benefit also include workers’

utility gain by staying employed. The optimal contract manages this trade-off by back-

loading firms’ dividend payouts and front-loading workers’ consumptions relative to the

first-best case. Back-loading introduces a wedge
(

1 + ι(u|φ,g,B)
θ(u|φ,g,B)

)
between marginal rate

of substitutions of the capital owner and workers, where the term ι (u|φ, g,B) is the

Lagrangian multiplier on constraint (14).

Finally, part 3 of Proposition 1 implies that separation rates are higher for unproductive

worker-firm matches. Workers who experienced a sequence of negative productivity shocks
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have low human capital, a high u, and a lower future surplus v (u′ (s′)) for the firm. It is

less profitable for firms to keep such workers. Incentive constraint (14) implies that the

optimal choice of θ must be low. More generally, separation rates are higher when the value

of the worker to the firm is lower. This may be due to either a lower future surplus from

the worker (that is, lower levels of v (u′ (s′))) or a higher discount rate (that is, lower values

of Λ).

4 Agency Frictions and Asset Pricing

In this section, we highlight how limited commitment and moral hazard affect aggregate

and cross-sectional asset returns. General equilibrium linkages between tail risk in labor

earnings and the pricing kernel are key for agency frictions to amplify risk premia. We

start with an “irrelevance” result in the spirit of Krueger and Lustig (2010) that provides

conditions under which agency frictions are irrelevant for both the price of aggregate risks

and aggregate labor market dynamics. We then analyze a special case of our model to

isolate the mechanism that amplifies the volatility of the stochastic discount factor and to

distinguish it from alternatives in the literature. We also derive a set of testable predictions

of our model mechanism which we later confront with the data.

4.1 An Irrelevance Result

Krueger and Lustig (2010) show that if the aggregate endowment growth is i.i.d. and

the distribution of idiosyncratic shocks f (ε, η| g), is independent of aggregate states, then

uninsurable idiosyncratic risk does not affect the price of aggregate shocks in a wide set

of incomplete markets models. To formalize a version of their result to our setting with

contracting frictions, we start with a definition.

Definition 3. An equivalent deterministic economy with a modified discount rate is the

economy described in section 2.2 with no aggregate growth and a modified discount rate

β̂ = β
(
E
[
e(1−γ)g

′
]) 1− 1

ψ
1−γ

, with E being the unconditional expectations operator.

In the following proposition we show that equilibrium allocations and state prices in the

stochastic economy can be constructed from the equilibrium of an equivalent deterministic

economy with a modified discount rate.

Proposition 2. (Krueger and Lustig) Suppose that gt is i.i.d. over time and that f (ε, η| g)

does not depend on g. If there exists an equilibrium in the equivalent deterministic economy
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with a modified discount rate, then there exists an equilibrium of stochastic economy

described in section 2.2 with the stochastic discount factor satisfying

Λ
(
g′
∣∣φ, g,B

)
=

1

R̂ (φ,B)

e−γg
′

E
[
e(1−γ)g′

] , (24)

where R̂ (φ,B) is the risk-free interest rate in the equivalent deterministic economy with a

modified discount rate.

Proof. See Appendix A1.

With i.i.d aggregate growth rates, the stochastic discount factor in the section 2.2

economy with full commitment and no moral hazard equals βe−γg
′
. This is also the

stochastic discount factor for the representative agent economy in which the growth rate

of aggregate consumption is gt. Equation (24) states that the stochastic discount factor

in the economy with agency frictions differs only by a multiplicative constant. Therefore,

agency frictions affect the risk-free interest rate but are irrelevant for the pricing aggregate

risks. We show in Appendix A1 that the optimal contract in the equivalent deterministic

economy with a modified discount rate can be used to construct the optimal contract in the

stochastic economy by simply adjusting for aggregate growth, and that the consumption

share of capital owners in the stochastic economy equals that in the equivalent deterministic

economy.

4.2 Aggregate Implications

Proposition 2 tells us that to understand the impact of agency frictions on aggregate risk

premia, we must deviate from its assumptions of i.i.d. growth and the time-invariant

distribution of idiosyncratic shocks. In the rest of this section, we analyze a special case of

our model that highlights the interaction between agency frictions, labor earnings, and the

market price of aggregate risks. We proceed by making several simplifying assumptions.

These assumptions are designed to isolate features and implications that are novel to our

setting, and to help us obtain closed form solutions for equilibrium returns. We relax these

assumptions later in the quantitative section where we use numerical methods to solve the

general model described in section 2.2.

Assumption 1. Aggregate shocks gt ∈ {gL, gH} with gL < gH . From period one on, the

transition probability from state g to state g′ satisfies π (g′| g) = 1 if g′ = g. Each firm
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has a single worker and η = 0. Let the distribution f(ε|g = gH) be degenerate, and the

distribution f(ε|g = gL) be a negative exponential with parameter ξ.11

This assumption includes the main departures from Proposition 2. To capture the

persistence of aggregate shocks we assume that booms (gt = gH) and recessions (gt = gL)

are permanent. To parsimoniously model countercyclical idiosyncratic shocks, we impose

no idiosyncratic shocks in booms. The assumption that firm-level shocks η = 0 is without

loss of generality, since Proposition 1 shows that the optimal contract depends only on ε+η.

In what follows, we interpret ε as both a firm-level shock and a worker-level shock.

Assumption 2. Preferences satisfy γ ≥ ψ = 1.

The crucial part here is that γ ≥ ψ. The assumption of unit elasticity of intertemporal

substitution is merely for tractability.

Assumption 3. Workers can fully commit.

As shown in Proposition 1, uninsurable risk in the left tail of labor earnings comes from

the firm-side limited commitment. In section 6.1, we show the that worker-side limited

commitment has little impact on the equity premium but matters for accounting for patterns

in earning dynamics. Hence, here we abstract from the lack of commitment on the the

worker side.

Assumption 4. Effort is only costly in period one, in which case, A (θ) = a
[
ln
(

1
1−θ

)
− θ
]

for some a > 0.

The parameter a in function A(θ) measures the severity of the moral hazard problem,

with a = 0 corresponding to the case in which effort is costless and moral hazard is irrelevant.

Assumption 5. For t = 2, 3, . . ., both employed and unemployed workers produce output

and consume α fraction of their output: Ct = αyt.

From period 2 on, there will be no risk sharing and workers consume a fixed fractions

of their outputs. This assumption captures that workers’ consumption is more exposed to

idiosyncratic shocks in future recessions because of lack of risk sharing. We assume that

unemployed workers lose 1− λ fraction of their human capital but keep producing output.

They are otherwise subject to the same law of motion of human capital as employed workers

from period 2 on.

11See Appendix A2 for the definition and the properties of the negative exponential distribution.
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We plot an event tree for the simple economy in figure 1. Let capital owners’

consumption share at date 0 be x0, and let workers’ initial promised utility be u0. We

assume all workers have the same promised utility u0; therefore, there is a unique u∗0 that

clears the market. In comparative static exercises, we study optimal contracting with an

arbitrary u0, even though, in equilibrium, the measure of agents at u0 might be zero unless

u0 = u∗0. We let xH ≡ x (gH) and xL = x (gL) denote the capital owners’ consumption

share at nodes H and L, respectively. For an arbitrary initial promised utility u0, we use

θH (u0) ≡ θ (u′ (u0, gH)| gH) and θL (u0, ε) ≡ θ (u′ (u0, gL, ε)| gL) to denote the effort choice,

cH (u0) ≡ c (u′ (u0, gH)| gH) and cL (u0, ε) ≡ c (u′ (u0, gL, ε)| gL) to denote the compensation

policy, and vH (u0) ≡ v (u′ (u0, gH)| gH) and vL (u0, ε) ≡ v (u′ (u0, gL, ε)| gL) to denote firms’

value function at nodes H and L, respectively. The value functions at node H do not

depend on ε since there is no idiosyncratic shock at node H. The following proposition

provides conditions under which agency frictions amplify the equity premium and generate

countercyclical unemployment.

Proposition 3. (Aggregate Implications) Under Assumptions 1-5, for expected utility

preferences, i.e., γ = 1, capital owners’ consumption share is countercyclical, that is,

xH < xL. For general recursive utility with γ ≥ 1, there exists a γ̂ ∈ [1, 1 + ξ) such

that if γ > γ̂, then (i) capital owners’ consumption share is procyclical, that is, xH > xL

and (ii) separation rates are countercyclcal, that is, θH (u0) > θL (u0, ε) for all (u0, ε).

Because the consumption Euler equation must hold for the unconstrained capital owners,

amplification in the market price of risk relative to a representative agent model is equivalent

to capital owner’s consumption share being procyclical. The first part of Proposition 3

implies that countercylical idiosyncratic risk by itself is not sufficient for amplifying the

volatility of the equilibrium stochastic discount factor. Independent of the risk aversion

γ, the optimal contract generates uninsurable tail risk (Proposition 1). However, under

expected utility, the pricing kernel is less volatile than the pricing kernel in an otherwise

identical economy with full commitment.

Countercyclical idiosyncratic risk means that a larger fraction of agents get constrained

in recessions relative to booms. Because constrained firms cut compensation, in the

aggregate there are more resources available. Since goods markets need to clear, these

resources are allocated between the capital owners and the unconstrained workers by

equating their intertemporal marginal rates of substitution. With expected utility, this

amounts to equalizing the growth rates of consumption of the capital owners and the

unconstrained agents. Therefore, for γ = 1 = 1
ψ , the consumption share of both capital

owners and unconstrained agents must increase and xL > xH .
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The second implication of the Proposition 3 is that keeping the intertemporal elasticity

of substitution fixed, a large enough risk aversion results in a procyclical consumption share

for capital owners. As risk aversion exceeds the inverse of the intertemporal elasticity of

substitution, contemporaneous marginal utilities are decreasing functions of continuation

utility. This forward looking property of the preferences is what translates uninsurable tail

risk in labor earnings into a higher market price of aggregate shocks.12

Persistent recessions that are associated with a lack of risk sharing in the future imply

lower continuation values and higher marginal utilities in the current period for workers.

Optimal risk sharing which requires equating marginal rates of substitution between capital

owners and unconstrained workers is now achieved by transferring resources away from the

capital owners. Proposition 3 says that for sufficiently high risk aversion, this incentive

is strong enough to dominate the effect of market clearing and delivers a procylical

consumption shares for capital owners.

The last part of Proposition 3 says that separation rates are higher in recessions relative

to booms. In our model, labor income has two sources of tail risk. First, the distribution of

productivity shock ε has a left tail. As shown in Proposition 1, under firm-side limited

commitment, this tail risk cannot be fully insured within optimal labor compensation

contracts. Second, workers become unemployed with probability θ in each period. The

countercyclicality of unemployment risk asserted in part (ii) of Proposition 3 is a direct

consequence of incentive compatibility under moral hazard. Equation (14) requires firms to

equalize the marginal cost of retention effort to its marginal benefit. The marginal benefit

of retention is the present value of profits that a worker can create for the firm. Valuation

ratios in recessions are lower relative to booms. Thus, firms have less incentive to exert

costly effort to retain workers in recessions relative to booms leading to countercyclical

separation rates.

The effects of limited commitment and that of moral hazard reinforce each other to

amplify the volatility of the stochastic discount factor. Limited commitment amplifies risk

prices because optimal contracts insure workers against adverse aggregate shocks which

makes capital owners’ consumption more risky. Higher separations in recessions magnify the

downside risk in labor earnings and hence the need for insurance. Thus, higher separation

risk leads to more procyclical consumption for marginal agents and the resulting higher

discounting in turn, leads to lower worker valuations, lower retention effort from firms and

12Ai and Bansal (2018) define the class of preferences under which marginal utility decreases with
continuation utility as generalized risk sensitive preferences. Generalized risk sensitivity is the key property
of preferences captured by the assumption γ > 1 that is responsible for the procyclical consumption share
in our model.
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more separations.

Contrasting the mechanism to alternatives proposed in the literature The above

result is in contrast with several exogenously incomplete market models, for example,

Constantinides and Duffie (1996), Constantinides and Ghosh (2014), and Schmidt (2015).

In those papers, all agents are marginal investors in risky assets, and hence countercyclical

uninsurable risk in consumption automatically translates into a more volatile pricing kernel.

In the simple example where market incompleteness is determined by optimal contracting

under agency frictions, agents with adverse idiosyncratic shocks are constrained and not

marginal. Hence, higher idiosyncratic volatility by itself is not sufficient to increase the

market price of risk.

Alvarez and Jermann (2001) and Chien and Lustig (2010) derive asset pricing

implications in a setting with one-sided limited commitment constraint. This corresponds to

a version of our model where firms can fully commit but workers cannot. Such environments

produce high equity premia when more workers are constrained in adverse aggregate states.

The worker-side limited commitment binds for worker-firm pairs that receive large positive

idiosyncratic productivity shocks. Constrained workers need to be compensated with higher

current and future wages. This lowers the consumption for unconstrained agents, raising

their marginal utilities. To amplify the risk premium, such a model would necessarily require

more positive skewness in labor earnings in recessions relative to booms; an implication that

is inconsistent with the key feature of labor market risk that we highlight in the introduction.

In addition, quantitatively, uninsurable tail risk on the downside are much more powerful

in amplifying the volatility of the stochastic discount factor than upside risk. The workings

of the simple example explain how a combination of firm-side limited commitment with

recursive utility jointly deliver downside risk in labor earnings and higher risk premia.

Proposition 3 also distinguishes our model from Danthine and Donaldson (2002),

Favilukis and Lin (2016b), and other papers that use sticky wages to explain the high

equity premium. In these models, markets are complete and labor compensation contracts

do not affect the pricing kernel. These models produce higher equity premium through an

“operating leverage” channel: labor compensation is less sensitive to aggregate shocks and

this amplifies the risk exposure of capital income. Since operating leverage only affects the

volatility of cash flows, these models need to assume a high level of risk aversion to match

aggregate Sharpe ratios.

In contrast to models with exogenous wage rigidity, in our setup, risk premia are

amplified primarily through the effect of agency frictions on the volatility of the stochastic
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discount factor and not because of a higher volatility of dividends.13 We return to this

implication in our quantitative analysis in section 6.1.

4.3 Cross-Sectional Implications

In addition to the implications for aggregate risk prices and aggregate unemployment

dynamics, our model has predictions for the cross section of returns and labor earnings.

We outline these implications here and formally test them using panel data in section 6.3.

In our model, heterogeneity in firms is summarized by a single state variable u. High-

u firms promise a larger fraction of cash flow to workers than low-u firms. Thus u can

be interpreted as “labor leverage”. Below we provide two comparative static results with

respect to u0.

Proposition 4. (Cross-Sectional Implications) Let cL (u0, ε) ≡ c (u′ (u0, gL, ε)| gL) denote

the compensation policy for workers with initial promised utility u0 at time 0. Under

Assumptions 1-5, (i) the elasticity of wage payments with respect to idiosyncratic shocks

∂

∂u0
E
[
∂ ln [eεcL (u0, ε)]

∂ε

]
> 0. (25)

and (ii) there exists a γ̂ ∈ [1, 1 + ξ) such that ∀γ > γ̂, ∃û, where û is defined as

ε(û, gL) = ln 1+ξ
ξ , such that ∀u0 < û,

∂

∂u0

(
vH (u0)

E [eεvL (u0, ε)]

)
> 0. (26)

Equation (25) implies that the average elasticity of compensation with respect to

idiosyncratic shock ε is increasing in promised utility u0. The term eεcL (u0, ε) is the level

of compensation to a worker with initial promised utility u0 at node L, and ∂ ln[eεcL(u0,ε)]
∂ε is

the elasticity of compensation with respect to idiosyncratic shock ε. Firms that promised

a higher fraction of cash flow to workers are more likely to be constrained. Whenever

the limited commitment constraint binds, perfect risk sharing is no longer possible and

worker compensation responds to idiosyncratic productivity shocks. Thus, labor shares

would predict firm-level wage pass-throughs. In section 6.3, we show that, consistent with

the above implication of our model, wage payments in firms with higher labor leverage are

13In our model the claim on aggregate dividends also has a higher price-to-dividend ratio in booms relative
to recessions. In Appendix A2, we show that under Assumptions 1-5, ∃ γ̂ ∈ [1, 1+ξ) such that γ > γ̂ implies

vH(u∗
0)

E[eεvL(u∗
0 ,ε)]

> 1.
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more sensitive to firm-level idiosyncratic shocks.

Equation (26) summarizes the implications of our model on the cross section of equity

returns. Compensation contracts insure workers against aggregate shocks, which makes the

residual dividends more risky. In our model, firms with high u0 have low market-to-book

ratios and high labor leverage. In the cross section, the operating leverage effect is stronger

for high u0 firms. These firms promise a large fraction of their cash flow to workers, bear

more aggregate risk, and compensate investors by delivering higher expected returns. In

section 6.2, we use panel data on firm-level measures of labor obligations and equity prices

to show that low market-to-book ratio and high labor leverage firms indeed have higher

expected returns.

5 Quantitative Analysis

5.1 Numerical Algorithm

Policy functions and state prices depend on the infinite-dimensional state variable φ. The

distribution φ directly shows up in the market clearing condition and indirectly as an

argument in the stochastic discount factor in the description of the contracting problem

P1. We use a numerical procedure similar to that in Krusell and Smith (1998) and replace

the distribution φ with suitable summary statistics. We assume that agents compute future

state prices by projecting the stochastic discount factor on the space spanned by {gt, xt}
and use xt+1 = Γx(gt+1|xt, gt) as a forecasting rule for xt. Our choice of the forecasting rule

is numerically efficient because given a law of motion for x, the stochastic discount factor

is completely pinned down.14

Using the forecasting function Γx, we compute the stochastic discount factor Λ(g′|x, g).

With Γx(x′|x, g) and Λ(g′|x, g), we solve the Bellman equation for the optimal contracting

problem using an endogenous grid method and value function iteration. In Appendix A3,

we describe a procedure that uses a grid on ε(u, g′|φ, g,B), which is the threshold for

the idiosyncratic shock such that the firm-side limited commitment constraint binds, to

tractably solve the contracting problem P1. After approximating the policy functions, we

simulate a panel of agents and update the law of motion Γx using simulated data. We repeat

this procedure until the the function Γx converges. Appendix A3 describes the detailed steps

14The market clearing condition equation (16) implies that x is a c(u|g, φ,B) policy function weighted
average of the distribution φ. It summarizes information in φ by assigning relatively more weight to values
of u that have a larger effect on aggregate resources. This choice contrasts our algorithm to that in Krusell
and Smith (1998), who use the first moment of the distribution of wealth as a summary statistic.
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and related diagnostics.

5.2 Calibration

Model parameters are divided into two sets: (i) parameters governing the stochastic process

for aggregate shocks and (ii) parameters governing labor market flows and the distribution

of idiosyncratic shocks to workers’ human capital.

Aggregate shocks A period is a quarter. We time aggregate outcomes and report annual

moments. We assume that the aggregate productivity process {gt}t is a sum of a two-state

Markov chain and a homoskedastic i.i.d. Gaussian component:15

lnYt+1 − lnYt = gt+1 + σEEt.

The state space for the Markov chain is {gH , gL}. We refer to states with g = gH as “booms”

and states with g = gL as “recessions.” The aggregate shock process {gt, Et}t is calibrated as

in Ai and Kiku (2013). They jointly estimate the values for {gH , gL}, the Markov transition

matrix, and the volatility parameter σE from post-war aggregate consumption data. Our

calibration implies an average duration of 12 years for booms and 4 years for recessions.

The parameters for aggregate shocks are listed in the top part of table 1.

Labor market flows and evolution of human capital We calibrate the parameters

that govern labor market flows and the evolution of human capital using transition rates

between employment status, estimates of earning losses after separation, cross-sectional

moments of labor earnings distributions, and other aggregate moments such as the mean

and volatility of total labor compensation relative to aggregate consumption. Below, we

specify our functional form choices and discuss the identification of key parameters by

pairing them with the most relevant moments.

We set κ = 1% to obtain an average working life of 25 years. We use the specification

A (θ) = a
[
ln
(

1
1−θ

)
− θ
]

for the cost of retention effort. We interpret a separation in the

model as a transition to the state of long-term unemployment (12 months and beyond).

The parameters {a, χ, λ, b} are pinned down by the transition rates from employment to

long-term unemployment, the duration of long-term unemployment, the average earnings

15Equilibrium prices and the optimal contract satisfy a homogeneity property and the presence of i.i.d E
shocks does not increase the state space for the value and policy functions. We use a more flexible process
than the one listed section 2.1 to better fit the autocorrelation of aggregate consumption growth.
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losses upon separation, and the estimate of the flow value of unemployment. To compute

the flows in and out of long-term unemployment, we use data from the Current Population

Survey summarized in table 1 of Shibata (2015). For earnings losses on separation, we use

information from Davis and von Wachter (2011), who estimate the present value of earning

losses due to job separations. We target the consumption equivalent of the flow value of

unemployment to be 65% of pre-separation wage earnings.16 The parameters and moments

related to labor flows are listed in the middle panel of table 1.

Workers’ human capital is affected by worker- and firm-level idiosyncratic shocks ε+ η.

We assume ε = αεW and η = (1− α) εF , where εW and εF are i.i.d. according to a

continuous density f(·|g). To capture the feature that the (negative) skewness of labor

earnings is cyclical, we model the distribution f(·|g) to be a Gaussian distribution in booms

and a mixture distribution of a Gaussian and a fat-tailed distribution with a negative

exponential form in recessions.17 We assume that both the Gaussian distributions as well

as the negative exponential distribution satisfy a normalization that the exponential of the

draw has a unit mean. These restrictions imply f(·|g) is paramterized by the following: the

standard deviation of the Gaussian distribution for booms σH , the standard deviation of the

Gaussian distribution for recessions σL, the intensity parameter for the negative exponential

distribution ξ, and the mixture weight ρ ∈ (0, 1), which is the probability of drawing from

the negative exponential distribution in recessions.

We set the parameter α to match the within- and across-firm variations in labor earnings

as reported in Song et al. (2015) and calibrate the parameters {σH , σL, ρ, ξ} to match

the cyclical properties of the moments of labor earnings calculated using the Panel Study

of Income Dynamics (PSID).18 We restrict the sample to households where the “head of

household” is a male whose working age is between 15 and 64, and who reports at least 500

hours of work in two consecutive years. Our measure of earnings is the regression residual

of post-tax labor earnings on observable characteristics: age of the head, the age square,

family size, and education level of the head. To obtain our target moments, we compute

the cross-sectional standard deviation and Kelly skewness for log earnings growth, which

16The empirical labor literature has a wide range of values for the flow value of unemployment. Shimer
(2008) uses the unemployment insurance replacement rate of 40%, Rudanko (2011), and Mulligan (2012) add
the value of home production and leisure and target a higher number of 85%, and Hagedorn and Manovskii
(2008) use an even higher estimate of about 95%.

17The form of the negative exponential distribution is described in equation (A2.1) in Appendix A2.
18The PSID is a longitudinal household survey of U.S. households with a nationally representative sample

of over 18,000 individuals. Information on these individuals and their descendants has been collected
continuously, including data covering employment, income, wealth, expenditures, health, education, and
numerous other topics. The PSID data were collected annually during the period 1968-97 and biennially
after 1997.
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are then averaged separately for “boom years” and “recession years.”19 We report the

parameter values and moments related to the earnings distribution in the bottom part of

table 1.

Our model closely matches the standard deviations of the earnings growth in booms

and recessions. We obtain a Kelly skewness of -3% in booms and -10% in recessions, as

compared to -3.2% and -9%, respectively, in the PSID.20

All parameters affect aggregate labor shares. In our model, the employed workers

consumption as a fraction of aggregate consumption is countercyclical. It has a mean

of 70%, a standard deviation of 3% and an autocorrelation of 0.58. These moments are

consistent with the data of aggregate labor compensation. We use national income and

product accounts (NIPA) to compute the ratio of aggregate labor compensation to aggregate

consumption and then detrend the series. For the sample 1947-2015, the mean labor share

in consumption is 75%, the standard deviation is 2.94%, and the autocorrelation is 0.88.

6 Results

We discuss the implications for asset pricing and labor market dynamics.

6.1 Aggregate Asset Prices

We summarize aggregate asset pricing moments in table 2. The baseline calibration is under

the column labeled “Model-Baseline” and the column labeled “’Model-No Frictions’ is the

version without limited commitment and moral hazard. We report the properties of returns

on both a claim to aggregate consumption Yt
�
φt(du) and a claim to aggregate corporate

dividends xtYt. Our model generates a high equity premium and a low risk-free interest

rate with a risk aversion γ = 5 and an IES ψ = 2. Without assuming any financial leverage,

the equity premium on the claim to corporate dividends is about 3.40% per year in the

baseline model. In the data, the average debt-to-equity ratio for publicly traded U.S. firms

is about 50%.21 Accounting for this financial leverage, our model implies a market equity

premium of 5.1%, which is close to the historical average excess return of 6.06% on the U.S.

19We treat 1980–82, 1991–92, 2000–01, and 2007–09 as recession years and the remaining as boom years.
20In a previous version, we also reported results for an alternative calibration which targeted moments

from Guvenen et al. (2014) and produced similar asset pricing results. Compared to the Guvenen et al.
(2014) data, the PSID allows us to control for transfers from the government and lifecycle earning patterns
that we abstract from in our setup.

21See Graham et al. (2015) for details on measurement of corporate leverage.
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aggregate stock market index. In contrast, the equity premium is 0.39% per year in the

first-best economy without limited commitment and moral hazard.

The premium on a risky asset is proportional to the covariance between the stochastic

discount factor and its return. Our model generates a high equity premium for two reasons.

First, agency frictions amplify the unconditional volatility of the stochastic discount factor.

As explained in Proposition 3, the insurance motives against persistent countercyclical tail

risk in labor earnings imply a procyclical consumption share of the marginal investors. A

more volatile stochastic discount factor is reflected in higher Sharpe ratios. Using the mean

and the standard deviation of excess returns from table 2, the Sharpe ratio on the claim to

aggregate dividends in the baseline is 38%, which is more than twice as large as that in the

case with no frictions.

The second reason for the high equity premium is the large volatility of stock returns.

In our model, stock returns are volatile because agency frictions generate fluctuations

in the volatility of the stochastic discount factor over time. The general equilibrium

implications of the agency problem introduce a new channel that raises the volatility of the

stochastic discount factor in recessions relative to booms. The reason is the presence of the

distributional state variable φ, whose slow-moving dynamics are summarized in persistent

changes in the capital owners’ share of aggregate consumption xt. Prolonged recessions

are associated with low levels of the capital owner’s consumption share. This implies that

small changes in xt translate into large variations in xt+1

xt
egt+1 , which is the consumption

growth rate of the capital owners. In equilibrium, the amplified volatility of the capital

owner’s consumption is compensated by a higher risk premium. The second effect of low

xt in recessions is a higher discounting of the future match surplus. This lowers firms’

incentives to retain workers and exacerbates the moral hazard problem. Agents anticipate

more separations and a higher downside earnings risk which feeds back into a higher risk

premia. On the other hand, in booms, the level of xt is high, and the volatility and

discounting effects are diminished.

This asymmetry results in countercyclical risk prices, higher return volatility, and

predictability of market returns by valuation ratios. The model delivers a 9.35% standard

deviation of the return on the unlevered claim to corporate dividends, which is about three

times higher than its counterpart in the economy with full commitment and no moral

hazard. Given a low volatility of aggregate consumption and the risk-free rate, most of the

increase in the volatility of the market return is accounted for by the time-varying equity

premium.

Time variation in the risk premium also generates the predictability of future excess
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returns by price-to-dividend ratios, an empirical fact documented by several papers

including Campbell and Shiller (1988), Fama and French (1988), and Hodrick (1992). In

table 3, we report the results of predictability regressions in our model and those in the

data. We regress excess stock market returns measured at one-to twelve-quarter horizons

on the log price-to-dividend ratio at the start of the measuring period. The “Model-

Baseline” column report coefficients and R2 of these regressions using the SP500 returns

over the period 1947-2015, where the data construction follows Beeler and Campbell (2012).

We report the same regression results using model-simulated data in the “Data” column.

Overall, the model produces regression coefficients and R2 that are fairly close to those in

the data. We also match the pattern that predictability is higher for longer horizon returns.

As a comparison, the first-best case in the column “Model-No Frictions” has very low R2.

Model benchmarking In this section, we compare our results to nested cases that

capture important benchmarks in the literature. The comparisons highlight features of our

model that are responsible for the quantitative results. Table 4 summarizes the findings.

Assume that firms can fully commit. This version of our model is similar to Alvarez

and Jermann (2001) or Chien and Lustig (2010), who study the asset pricing implications

of worker-side limited commitment. We keep all other features of the model unchanged,

including the assumption that workers obtain all the surplus from new matches and the

specification of the moral hazard problem. The results are under the column labeled “Only-

Worker-Side Limited Commitment” in table 4.

The risk premium on the aggregate endowment claim and the volatility of returns are

lower in the model with only-worker-side limited commitment. The intuition for this result

can be explained as follows. First, the tightness of the worker-side limited commitment

constraint does not change significantly over time. In the model, the worker-side limited

commitment constraint binds for workers that receive sufficiently positive idiosyncratic

shocks. However, the right tail of the distribution of idiosyncratic shocks is similar in booms

and recessions. This is because our calibration is disciplined by the feature of the data that

the standard deviation and the right skewness of labor earnings are almost acyclical. Second,

worker-side limited commitment generates uninsurable upside risk in labor earnings. Even

with recursive utility, this does not produce quantitatively significant effects on marginal

utilities.

In terms of the labor market moments, we find that the model with only-worker-side

limited commitment misses the large negative Kelly skewness of labor earnings in recessions

and other measures of tail risk, which in our baseline model is generated by the firm-side
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limited commitment constraint. In addition, the lack of time variation in discount rates

mitigates the cyclicality of separation rates through the moral hazard channel.

Next we compare our model to a version of Favilukis and Lin (2016b). Their model

features a complete-market stochastic discount factor and exogenous wage rigidity which

generates countercyclical labor shares. We capture the Favilukis and Lin (2016b) mechanism

in our setup by assuming that the aggregate dividend process follows x̃(gt)Yt, where

x̃(gH) > x̃(gL). We keep all other parameters of the model unchanged and discipline the

choice of x̃(gH) and x̃(gL) by calibrating them to match the mean and standard deviation of

labor shares of 67% and 2%, respectively, as in Favilukis and Lin (2016b). We then price the

resulting x̃(g)Y claim using stochastic discount factor that is derived from a representative

agent economy version of our model.

The “Exogenous Wage Rigidity” version of the model delivers a low equity premium

of 0.43% and a small volatility of excess returns of 2.77%. These values are only slightly

higher than those in our first-best case reported under the column labeled “No Frictions”

in table 2. The volatility of aggregate labor share in the data is small and this limits the

ability of models relying exclusively on operating leverage to generate high risk prices.

In contrast, our baseline generates a significantly higher premium. Agency frictions in

our model amplify the volatility of the stochastic discount factor as well as the risk exposure

the aggregate dividend claim. For example, under the column labeled “Model-Baseline” in

table 2, while the risk premium on the aggregate consumption claim is 3.40%, the premium

on the claim to corporate dividends is 3.53%. The small difference in these risk premia

highlights that the amplification is primarily due to a more volatile stochastic discount

factor and the role of the cash flow volatility channel is small.

Modeling the mixture distribution is necessary to match the extent and cyclicality of tail

risk observed in labor earnings, and at the same time, deliver an approximately acyclical

standard deviation of earnings growth as observed in the PSID. To highlight its importance,

in the column labeled “No Mixture” in table 4, we report two calibrations without assuming

a mixture distribution: (i) σH = σL and (ii) σH < σL.

In the case where the distribution of idiosyncratic risk is independent of the aggregate

state, that is, σH = σL, we find that the asset pricing implications are almost similar to the

first-best case, consistent with Krueger and Lustig (2010) intuition outlined in section 4.1.

In the case σL > σH , it is possible to make σL to be sufficiently higher than σH so that the

implied volatility of the stochastic discount factor is similar to the baseline calibration. With

σL = 10.3% and σH = 8%, we are able to get a equity premium on the unlevered aggregate
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consumption claim of 3.28%. However, we find that the earnings growth distribution has

(counterfactually) countercylical standard deviation, 38% in recessions and 30% in booms,

and almost no cyclicality in Kelly skewness.

6.2 Cross Section of Expected Returns

Value premium Stocks with low valuation ratios (value stocks) earn higher average

returns than stocks with high valuation ratios (growth stocks). The difference in the mean

returns of value and growth stocks is robust to various ways of constructing the value ratio,

for example, as the ratio of the market value of the firm to its book value, or as the ratio of

the market price of the stock to earnings per share; see Fama and French (1992) and Fama

and French (1993).

Our model generates a value premium. The price-to-earnings ratio and expected returns

are functions of the state variable ut, which summarizes the fraction of future cash flows that

are promised to workers. Firms with high-u workers have a high operating leverage and a low

valuation ratio. Proposition 4 states that such firms should have a higher expected return.

To our compare our model implications with data, we sort stocks into three portfolios

ranked by earnings-to-price ratios.22 The mean high-minus-low return is 6.27% per year

with a t-statistic of 5.01. The same portfolio sorting procedure in the data simulated from

the model generates a value premium of 4.66% per year.

In our model, firms with a history of negative idiosyncratic shocks have higher expected

return. A similar effect is documented by Bondt and Thaler (1985) as “long-term reversal.”

In our model, long-term reversal and value premium are due to the same economic

mechanism, and hence they are highly correlated. Consistent with this implication of our

theory, Fama and French (1996) show that the return on value-growth portfolios and long-

term reversal sorted portfolios are highly correlated.

Labor leverage and the cross section of expected returns A more direct test of the

model mechanism is the connection between the value premium and firm-level obligations

to workers. We use the merged CRSP/Compustat panel to test this implication.

We focus on publicly traded firms in the Compustat database and regress excess returns

on a firm’s equity, which are defined as the difference between equity returns and the three-

22The return series for these portfolios is obtained from Kenneth French’s website and covers the period
1956-2016.
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month T-bill rate, on firm-level labor shares and time fixed effects.

Excess Returnf,t+1 = αr + βr ×LaborSharef,t + λrt. (27)

Following Donangelo et al. (2016), labor share for firm f at period t is constructed using

LaborSharef,t =
XLRft

OPIDf,t +XLRf,t + ∆INVf,t
, (28)

where XLR is the total wage bill, OPID is operating profit before interest and depreciation

and INV is change in inventories. Whenever XLR is not available, we construct an extended

labor share (ELS) using the procedure described in Donangelo et al. (2016). In table 5,

we report our results both with labor share under the column labeled “Using LS” and

with extended labor share under the column labeled “Using ELS.” Consistent with our

model, labor share predicts expected returns, and the point estimate for βr is positive

and significant.23 These findings are consistent with and complementary to other studies

such as Donangelo et al. (2016), who document returns on labor-share-sorted portfolios

and estimate versions of (27), as well as Favilukis and Lin (2016a), who use wage rigidity

as a proxy for labor leverage at the industry level and show that labor leverage predicts

cross-industry expected returns.

6.3 Labor Market Implications

In this section, we focus on the implications for aggregate and cross-sectional labor market

dynamics.

Discount rates and unemployment risks The incentive compatibility condition (14)

links unemployment risk to worker valuations that are influenced by discount rate variations.

In our model, prolonged recessions are states with high expected returns and low present

values of cash flows from workers. Because firms’ retention effort is not observable, they

have a lower incentive to keep workers in times of low valuations. Several papers in the

recent literature emphasize the link between discount rates and unemployment; see for

example, Hall (2017), Kehoe et al. (forthcoming) and Borovicka and Borovickova (2018). In

contrast to these papers, the variation in discount rates in our setting is driven by general

equilibrium implications of contracting frictions, and our model is consistent with broad

patterns in aggregate and cross-sectional asset returns.

23The estimates are robust to including various control variables such as leverage and total assets in the
regression (27). See Appendix A5.
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In our model, average separation rates are countercyclical: 3% per year in recessions

and 2% per year in booms. Furthermore, most separations occur in worker-firm pairs where

the value of the match is low. Relative to a mean separation rate of 2.2%, the separation

rate in large and more productive firms is much smaller, about 0.5% per year. Endogenous

separations mean that tail risk in labor earnings is partly driven by the extensive margin

when workers transition from employment to long-term unemployment. We decompose

large earnings drops, that is, reductions in individual earnings of more than 20%, into

two categories: separations and within employment compensation cuts. In our calibration,

48.5% of large earnings drops are due to separation and the remaining 51.5% is due to a

binding firm-side limited commitment constraint. This pattern is consistent with Guvenen

et al. (2014), who document that workers in the left tail of the income distribution are more

likely to experience a large drop in earnings, and claim that a nonnegligible fraction of the

drop is due to unemployment risk.

Exposures to idiosyncratic and aggregate shocks Propositions 3 and 4 have direct

implications on how idiosyncratic and aggregate shocks are insured in the presence of

agency frictions. Workers with adverse histories are more exposed to idiosyncratic shocks

in recessions due to firm-side limited commitment. The optimal contract compensates this

lack of insurance by providing such workers an additional hedge against aggregate shocks.

Thus, the consumption of workers with adverse histories would have a relatively higher

exposure to idiosyncratic shocks and a lower exposure to aggregate shocks.

To test whether firms with larger obligations to workers provide less insurance against

idiosyncratic shocks, we measure the pass-through of firm-level shocks to their wage

payments and check whether these pass-throughs systematically vary with the firm-level

labor share. We estimate the regression

∆ log WageBillf,t+1 = αw + βw0 LaborSharef,t + βw1∆ log Salesf,t

+ γw∆ log Salesf,t × LaborSharef,t + λwt, (29)

where WageBillf,t+1 is the total wage bill of firm f in year t + 1, and LaborSharef,t is

as defined in equation (28). Our sample includes all firms in Compustat for the period

1959-2017.

We report our regression results in table 6, where standard errors are in parentheses.

Consistent with our model’s implication of imperfect risk sharing, the point estimate of the
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pass-through coefficient β1 is positive but less than 1.24 Furthermore, the interaction term

γw > 0 and is statistically significant. This confirms the conclusion of Proposition 4 that

firms with higher labor leverage have a higher pass-through coefficient. In Appendix A5,

we estimate a version of (29) where we split the sales growth into a negative sales growth

part and positive sales growth part. We find that consistent with the model, the interaction

term is mainly driven by the negative part of sales growth.

The history dependence of earnings’ exposure to idiosyncratic shocks generated by

the optimal contract also contrasts our model with models with exogenously incomplete

markets; see for example, Constantinides and Duffie (1996), Schmidt (2015), and

Constantinides and Ghosh (2014). In order to ensure a tractable equilibrium with zero

trade in financial assets, these papers assume that the earnings processes of all workers

have the same exposure to idiosyncratic shocks.

Our model has two related implications for how the exposure to aggregate shocks varies

in the cross section. First, since the optimal risk sharing requires that high-productivity

workers and capital owners insure low-productivity workers against aggregate shocks, their

consumption will be more procyclical. Second, the risk-sharing scheme can be implemented

by a portfolio strategy where high-productivity workers invest a higher fraction of their

wealth in the aggregate stock market.

In the model, the standard deviation of consumption growth for capital owners is

10% per year. In the data, it is difficult to reliably measure the consumption of wealthy

stockholders. Using the sample from Consumer Expenditure Survey (CEX), Wachter and

Yogo (2007) report that the median standard deviation of consumption growth for the

wealthiest 50% of stock-holding households is 7.8% and that of the wealthiest 75% is about

12% per year.

Next, we test the implication on wealth exposures. To illustrate the positive empirical

relationship between wealth and stock market participation we run the following regression

using the data from the 2007 Survey of Consumer Finances (SCF):25

StockWeightsi = α+ β ×FinWealth Percentilei, (30)

24Guiso et al. (2005) also estimate the extent of insurance within the firm using administrative level
matched employer-employee data and similar regressions.

25This relationship is also documented by several other papers including Mankiw and Zeldes (1991),
Poterba (2000), Vissing-Jorgensen and Attanasio (2003).

33



where StockWeights is defined as

Stock Wealth

Stock Wealth + Bond Wealth

and FinWealth Percentile is the percentile of Stock Wealth + Bond Wealth.26 We find an

intercept of 0.06 (s.e. 0.004) and a positive slope of 0.99 (s.e 0.009), confirming an increase

in the stock market exposure with wealth.

In the model, equilibrium consumption of any agent can be replicated by a claim to the

aggregate stock market index, a one-period risk-free bond, and a financial security whose

payoff depends only on firm- and individual-level shocks, but not on aggregate shocks. We

define ∆C (ui|g, φ) to be the value of the aggregate stock market index as a fraction of the

total value of worker i’s consumption replicating portfolio. The details for the calculation

of ∆C (u|g, φ) are in Appendix A4. We estimate regression (30) using data simulated by

the model where we use ∆C (u|g, φ) as a proxy for StockWeights and human capital (which

summarizes past idiosyncratic shocks) as a proxy for wealth. We find an intercept of 0.27

and a positive slope of 0.78.

The positive relationship between wealth and aggregate risk exposure contrasts us with

models of only-worker-side limited commitment, for example, Alvarez and Jermann (2001).

In these settings, (rich) workers who experienced a history of positive shocks are more likely

to be constrained, and (poor) workers who experienced a history of negative shocks are more

likely to be unconstrained. If the only-worker-side limited commitment model generates

an amplified equity premium, then the discount factor of the marginal agent necessarily

needs to be more volatile than that of an average agent. Interpreting such an insurance

arrangement from the perspective of the consumption-replicating portfolio, unconstrained

poor agents must have a higher weight in stocks than the constrained high-productivity

workers; an implication that is inconsistent with the empirical evidence discussed above.

7 Conclusion

We present an asset pricing model where risk premia are amplified by agency frictions.

Under the optimal contract, sufficiently adverse shocks to worker productivity are uninsured.

In general equilibrium, exposure to downside tail risk results in a more volatile stochastic

26To measure stock holdings, we sum direct holdings of equities and indirect holdings through mutual funds
and retirement accounts. To measure bond holdings, we sum direct and indirect holdings of government
bonds through mutual funds (taxable and nontaxable), saving bonds, liquid assets, money market accounts,
and components of retirement accounts that are invested in government bonds. We restrict the sample to
households with nonzero FinWealth and labor income.
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discount factor and time variations in discount rates. These features of the pricing kernel

yield quantitatively large and volatile risk premia and generate a substantial cross-sectional

variation in returns across firms. Our model is also consistent with observations on how

individual earnings and wealth vary in their exposure to idiosyncratic and aggregate shocks.
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Figure 1: Timing of the two period model

c0

cH ; uH

cL(ε); uL(ε)

x0

xH ; wH

xL; wL
gL

gH

41



Table 1: PARAMETERS

Parameters Values Targeted moments Values

Aggregate Risk
gH , gL 0.35%,

-0.15%
Mean, std of consumption growth 1.94%, 2.14%

π(gH |gH) 0.99 Duration of booms 12 yrs
π(gL|gL) 0.95 Duration of recessions 4 yrs
σE 1.2% Autocorr of consumption growth 0.44

Labor Market
a 0.17 Mean separation rate 2.2%
χ 8% Long-term unemployment duration 3 years
λ 96% PV of earning losses on separation 30%
b 1 Flow value of unemployment 40-95%
κ 0.01 Duration of working life 25 years

Idiosyncratic Risk
α 82% Across firm wage variation 40%
σL, σH 7.0%, 8.0% Std. of labor earnings change in

booms and recessions
32%, 31%

τ, ρ 4.155, 2% Kelly skewness of labor earnings
change in booms and recession

-3.2%, -8.9%

Other parameters
β,ψ,γ 0.989, 2, 5 Discount factor, IES, risk aversion

Notes: All reported moments are annualized. The NIPA sample for aggregate consumption is 1930-2007.

We follow the estimation procedure in Ai and Kiku (2013). The CPS transition rates are computed using the

monthly average of workers’ transitions over 12-month intervals between January 1976 and July 2014. Davis

and von Wachter (2011) use longitudinal Social Security records from 1974 to 2008. The earnings losses are

computed using job displacements defined as in long-tenure men, 50 years or younger, in mass-layoff events

at firms with at least 50 employees. The earnings losses are accumulated for 20 years at a discount rate of

5% and are expressed as a percentage of displaced workers’ average annual predisplacement earnings. The

flow value of unemployment is relative to wages and in the range of estimates in Shimer (2008), Rudanko

(2011), and Hagedorn and Manovskii (2008). The within- and between- firm wage variation is taken from

table 6 in Song et al. (2015). We use the PSID for periods 1968-2014. The sample selection is explained in

the text.
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Table 2: AGGREGATE ASSET PRICING IMPLICATIONS

Moments Model Data
Baseline No Frictions

Excess return on consumption
mean 3.40% 0.39% -
std. 8.87% 2.62% -

Excess return on dividends
mean 3.53% 0.43% 6.06%
std. 9.35% 2.77% 19.8%

Std of log SDF
booms 17.52% 13.47% 38.00%
recessions 33.75% 20.07% 66.00%

Risk free rate
mean 1.91% 4.73% 0.40%
std. 2.76% 0.39% 2.85%

Notes: All moments are annualized. In the “Model” column, the claim to consumption is Yt
�
φt(du). The

the claim to dividends is xtYt and assumes zero financial leverage. The column labeled “No Frictions”

is the first best economy, i.e., without limited commitment and moral hazard with same parameters for

preferences and technology as the baseline. The column labeled “Data” column computes market return as

value-weighted returns from CRSP stock index and adjusted for CPI inflation. Estimates of debt-to-equity

for publicly traded U.S. firms range from 40%-50%. The risk-free rates are computed as in the appendix of

Beeler and Campbell (2012). The estimates for Sharpe ratios on the market return in booms and recessions

are from Lustig and Verdelhan (2012).
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Table 3: AGGREGATE RETURN PREDICTABILITY

Horizon Model Data
(quarters) Baseline No Frictions

β R2 β R2 β R2

2 -0.356 0.157 -0.381 0.001 -0.062 0.042
4 -0.580 0.251 -0.739 0.001 -0.113 0.075
8 -0.788 0.329 -1.409 0.002 -0.190 0.119
12 -0.860 0.345 -2.029 0.003 -0.236 0.142
16 -0.871 0.328 -2.600 0.003 -0.277 0.166

Notes: The coefficients and R2 of the regressions
∑J
j=1(rt+j − rf,t+j) = α + β(pdt) + εt+j . The column

labeled “Model-Baseline” uses data simulated by the baseline calibration. The column labeled “Model-No

Frictions” is the first best economy, i.e., without limited commitment and moral hazard with same parameters

for preferences and technology as the baseline. The column labeled “Data” follows the construction in Beeler

and Campbell (2012).
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Table 4: COMPARISON TO OTHER BENCHMARKS

Moments Baseline Only-Worker-
Side Limited
Commitment

Exogenous
Wage
Rigidity

No Mixture

σH = σL σH < σL

Excess return on consumption
mean 3.40% 1.24% 0.39% 1.07% 1.42%
std. 8.87% 3.60% 2.62% 3.15% 3.28%

Excess return on dividends
mean 3.53% 1.17% 0.43% 1.10% 1.46%
std. 9.35% 3.36% 2.77% 3.34% 3.51%

Std of log SDF
booms 17.52% 14.18% 13.47% 13.66% 17.92%
recessions 33.75% 22.07% 20.70% 23.67% 31.80%

Risk free rate
mean 1.91% 3.58% 4.73% 4.28% 4.68%
std. 2.76% 0.72% 0.39% 0.74% 0.39%

Notes: All moments are annualized. In the “Model” column, the claim to consumption is Yt
�
φt(du). The

the claim to dividends is xtYt and assumes zero financial leverage. For all cases, technology and preferences

parameters are the same as the baseline. The column labeled “Only-Worker-Side Limited Commitment”

relaxes constraint v(u|φ,B, g) ≥ 0. The column labeled “Exogenous Wage Rigidity” uses the first-best

stochastic discount factor, in the row “Excess returns on xtYt” we price an unlevered claim to corporate

dividends. The cash flow from this claim is modeled as x̃(g)Y where x̃(g) has a mean of 33% and a standard

deviation of 2%, as in Favilukis and Lin (2016b). In the column labeled “No Mixture”, we set the mixture

probability of drawing from the negative exponential ρ to zero. The choices for values for {σH , σL} in the

subcolumns are explained in the text.
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Table 5: FIRM-LEVEL RETURNS AND LABOR SHARES

Coefficients Using LS Using ELS

Labor share 1.38 1.25
(0.41) (0.19)

Time fixed
effects

Yes Yes

Notes: The sample consist of firm-year observations from CRSP/Compustat merged files for the years 1968-

2016. In the column labeled “Using LS” we use labor share computed using (28), and in the column labeled

“Using ELS” we use the procedure described in Donangelo et al. (2016) and construct “extended labor

share.” In both specifications, labor shares are standardized and twice lagged, and standard errors are

clustered at firm level.
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Table 6: FIRM-LEVEL WAGE PASS-THROUGHS AND LABOR SHARES

Coefficients Using LS Using ELS

LogSales 0.4159 0.3187
(0.0422) (0.0276)

LaborShare -0.0726 -0.1648
(0.007) (0.0061)

LaborShare ×
LogSales

0.3871 0.3538

(0.0776) (0.0517)

Time fixed
effects

Yes Yes

Notes: The sample consist of firm-year observations from Compustat for the years 1959-2016. We follow

Donangelo et al. (2016) in the construction of firm labor share, the results of which are reported in the

column labeled “Using LS”, and the construction of extended labor share, the results of which are reported

in the column labeled “Using ELS.” In both specifications, labor shares are twice lagged, and standard errors

are clustered at the firm level.
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Online Appendix for Asset Pricing with Endogenously

Uninsurable Tail Risk

A1 Proof for Propositions 1 and 2

A1.1 Characterization of equilibrium

In this section, to prepare for the proofs for Propositions 1 and 2, we provide a set of necessary and
sufficient conditions that characterize the equilibrium. We first state a lemma that establishes that the
equality constraint (14) can be replaced by an inequality constraint so that the optimal contracting
problem P1 is a standard convex programming problem.

Lemma 1. Suppose A′ (θ), A′′ (θ), and A′′′ (θ) > 0 for all θ ∈ (0, 1). The policy functions for the
optimal contracting problem P1 in the main text can be constructed from the solution to the a convex
programming problem described below

v (u|φ, g,B) = max
c,θ,{u′(s′)}

{
1− c−A(θ)+

κθ
´

Λ (g′|φ, g,B) eg
′+η′+ε′v (u′ (s′) |φ′, g′, B′) Ω(ds′|g)

}
(A1.1)

s.t : u ≤
[
(1− β) c1−

1
ψ + βm1− 1

ψ (u|φ, g,B)
] 1

1− 1
ψ , (A1.2)

v (u′ (s′)|φ′, g′, B′) ≥ 0, for all s′, (A1.3)

u′(s′) ≥ λu (φ′, g′, B′) , for all s′, (A1.4)

A′(θ) ≤ κ
ˆ

Λ (g′|φ, g,B) eg
′+η′+ε′v (u′ (s′) |φ′, g′, B′) Ω(ds′|g). (A1.5)

where

m (u|φ, g,B) =

{
κ

ˆ
e(1−γ)(g′+η′+ε′)

[
θ [u′ (s′)]

1−γ
+ (1− θ) [λu (φ′, g′, B′)]

1−γ
]

Ω(ds′|g)

} 1
1−γ

,

Proof. We label the above-stated maximization problem as P2. The assumption that A′ (θ) is strictly
convex means that (A1.2)-(A1.5) describe a convex set with a nonempty interior and the objective
function (A1.1) is concave. Thus, problem P2 is a convex programming problem. We next show that
optimal choices for P2 are feasible for problem P1.

Optimal policies for P2 satisfy a set of first-order necessary conditions. In particular, let ι ≥ 0 be
the Lagrange multiplier of the constraint (A1.5), first-order conditions with respect to θ implies

ιA′′ (θ) =
β

1− β c
1
ψmγ− 1

ψ
1

1− γ

ˆ
e(1−γ)(η′+ε′)

{
[u′ (s′)]

1−γ − [λū (g′, φ′, B′)]
1−γ
}

Ω (ds′| g′) . (A1.6)

The limited commitment constraint on worker side, equation (A1.4) implies that right-hand side of
(A1.6) must be strictly positive. Therefore, ι > 0 and (A1.5) must holds with equality at the optimum.
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Let ιu be the Lagrange multiplier of the promise keeping constraint (A1.2), the first-order condition
with respect to c implies

ιu =
1

1− β
( c
u

) 1
ψ

> 0. (A1.7)

Thus, inequality (A1.2) must also hold with equality at the optimum.

As a result, the optimal policy for P2 satisfy all of the constraints for P1 and as the constraint
set for P2 larger, the optimal policies to P2 also attain the maximum for P1.

Suppose the stochastic discount factor and the law of motion of the aggregate state variables jointly
satisfy the following condition:

Assumption A.1. For some ε > 0, and for all (φ, g,B),

∑
π (g′| g) Λ (g′|φ, g,B) eg

′
< 1− ε. (A1.8)

Given Assumption A.1, standard arguments from Stokey et. al (1989) imply that there is a unique
v in the space of bounded continuous functions that satisfies (A1.1). In addition, v is continuous,
strictly decreasing, strictly concave and differentiable in the interior. We denote the policy functions
for P2 by

{
c (u|φ, g,B) , θ (u|φ, g,B) , ι(u|φ, g,B), {ε̄(u, g′|φ, g), ε(u, g′|φ, g)}g′ , {u′ (u, z′|φ, g,B)}z′

}
. (A1.9)

The first-order necessary conditions for P2 imply that the above policy functions must satisfy

1. ∀η′ + ε′ ∈ [ε(u, g′|φ, g,B), ε̄(u, g′|φ, g,B)], u′ (u, s′|φ, g,B) satisfy

Λ (g′|φ, g,B) =
βe−γ(g

′+η′+ε′)

1 + ι(u|φ,g,B)
θ(u|φ,g,B)

[
c (u′ (u, s′|φ, g,B)|φ′, g′, B′)

c (u|φ, g,B)

]− 1
ψ
[
u′ (u, s′|φ, g,B)

m (u|φ, g,B)

] 1
ψ−γ

.

(A1.10)

2. ∀η′ + ε′ ≥ ε̄(u, g′|φ, g,B),
u′ (u, s′|φ, g,B) = λū (g′, φ′, B′) ; (A1.11)

and ∀η′ + ε′ ≤ ε(u, g′|φ, g,B),

u′ (u, s′|φ, g,B) = u∗ (g′, φ′, B′) , (A1.12)

where u∗ (g′, φ′, B′) satisfies that v (u∗ (g, φ,B)|φ, g,B) = 0 for all (φ, g,B).

3. The Lagrange multiplier ι(u|φ, g,B) satisfies

ι(u|φ, g,B) =
1

A′′ (θ (u|φ, g,B))

β

1− β c (u|φ, g,B)
1
ψ m (u|φ, g,B)

γ− 1
ψ × 1

1− γ

×
{ˆ

e(1−γ)(η′+ε′)
{

[u′ (u, s′|φ, g,B)]
1−γ − [λū (g′, φ′, B′)]

1−γ
}

Ω (ds′| g′)
}
. (A1.13)

The policy functions must satisfy the equality constraints of the problem P1

A′(θ (u|φ, g,B)) = κ

ˆ
Λ (g′|φ, g,B) eg

′+η′+ε′v (u′ (s′) |φ′, g′, B′) Ω(ds′|g), (A1.14)
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u =
[
(1− β) c1−

1
ψ + βm1− 1

ψ (u|φ, g,B)
] 1

1− 1
ψ , (A1.15)

where

m (u|φ, g,B) =

{
κ

ˆ
e(1−γ)(g′+η′+ε′)

[
θ (u|φ, g,B) [u′ (u, s′|φ, g,B)]

1−γ

+(1− θ (u|φ, g,B)) [λu (φ′, g′, B′)]1−γ

]
Ω(ds′|g)

} 1
1−γ

.

The following lemma states that conditions (A1.10) - (A1.15) are both necessary and sufficient
for optimality.

Lemma 2. Suppose there exist an SDF Λ (g′|φ, g,B), a worker’s outside option, ū (φ, g,B), and a law
motion for aggregate state variables that satisfy Assumption A.1. Suppose that given Λ (g′|φ, g,B),
ū (φ, g,B), and the law of motion for state variables, policy functions for problem P2, as denoted
in (A1.9), satisfy the optimality conditions (A1.10)-(A1.13) and the equality constraints (A1.14)-

(A1.15). In addition, c(u|φ,g,B)
u is nondecreasing in u for all (g, φ,B). Let v (u|φ, g,B) be the unique

fixed point of the operator T :

Tv (u|φ, g,B) =
1− c (u|φ, g,B)−A(θ (u|φ, g,B))+

κθ (u|φ, g,B)
´

Λ (g′|φ, g,B) eg
′+η′+ε′v (u′ (u, s′|φ, g,B) |φ′, g′, B′) Ω(ds′|g).

(A1.16)
Then, the policy functions together with the value function v(u|g, φ,B) solve the problem P2.

Proof. Suppose there exists a set of policy functions that satisfy conditions (A1.10)-(A1.15). Given
condition (A.1), the operator defined in (A1.16) is a contraction, and we can construct the value
function v (u|φ, g,B) from the policy functions as the unique fixed point of (A1.16). The first-order
conditions (A1.10)-(A1.12) imply that the value function constructed above must satisfy

∂

∂u
v (u|φ, g,B) = − 1

1− β

(
c (u|φ, g,B)

u

) 1
ψ

. (A1.17)

Because c(u|φ,g,B)
u is nondecreasing in u, ∂

∂uv (u|φ, g,B) must be nonincreasing, that is, v (u|φ, g,B)
is a concave function of u. As a result, given v (u|φ, g,B), the first-order conditions, (A1.10)-(A1.15)
can be shown to be equivalent to the set of first-order conditions for the programming problem P2,
which is necessary and sufficient for optimality. Therefore, the above constructed value functions and
policy functions must solve the optimal contracting problem P2, as needed.

Given the above discussion, it is straightforward to provide a characterization for the equilibrium
price and quantities using optimality conditions. We summarize these conditions in the following
lemma. The proof is omitted as it follows directly from Lemma 1 and Lemma 2.

Lemma 3. The equilibrium prices and quantities can be summarized as:

i) a set of policy functions,

x (g, φ,B) , c (u|φ, g,B) , θ (u|φ, g,B) , ι(u|φ, g,B), {ε̄(u, g′|φ, g), ε(u, g′|φ, g)}g′ , {u′ (u, s′|φ, g,B)}s′ ,

ii) worker’ outside option ū (φ, g,B) and initial utility at employment u∗ (φ, g,B),

iii) a law of motion of φ and B,

iv) a SDF and a firm value function v (u|φ, g,B), such that

3



1. the SDF is consistent with capital owner’s consumption, that is, Λ (g′|φ, g,B) and x (g, φ,B)
satisfy equation (19), where the capital owner’s utility, w (g, φ,B) is constructed from x (g, φ,B)
using equation (15),

2. the value function and policy functions satisfy the optimality conditions (A1.10)-(A1.15),

3. the outside option ū (φ, g,B) satisfies (9), u∗ (φ, g,B) satisfies v (u∗ (g, φ,B)|φ, g,B) = 0 for all
(φ, g,B), and

4. the law of motion of the aggregate state variables satisfy (17) and (18).

We now prove Proposition 1.

A1.2 Proof of Proposition 1

Given Assumption A.1 and Lemma 1, standard arguments from Stokey et. al (1989) imply that the
value function v for the optimal contracting problem (10) is continuous, strictly decreasing, strictly
concave and differentiable in the interior. Because the value function is strictly decreasing, the limited
commitment constraint (12) can be written as u′ (s′) ≤ u∗ (φ′, g′, B′) for all s′, where u∗ (φ, g,B) is
defined by equation (20). Therefore, the first order condition with respect to continuation utility and
the envenlop condition for the programming problem (A1.1) together imply that one of the following
three cases have to true:

1. In the interior, equation (23) holds.

2. The worker-side limited commitment constraint binds, u′ (u, s′|φ, g,B) = λū (φ′, g′, B′), and,

[
x (φ′, g′, B′)
x (φ, g,B)

]− 1
ψ
[
w (φ′, g′, B′)
n (φ, g,B)

] 1
ψ−γ (

1 +
ι (u|φ, g,B)

θ (u|φ, g,B)

)

≥ e−γ(η
′+ε′)

[
c (u′ (u, s′|φ, g,B) , φ′, B′)

c (u|φ, g,B)

]− 1
ψ
[
u′ (u, s′|φ, g,B)

m (u|φ, g,B)

] 1
ψ−γ

, (A1.18)

3. The firm-side limited commitment costraint binds, u′ (s′) = u∗ (φ′, g′, B′),

[
x (φ′, g′, B′)
x (φ, g,B)

]− 1
ψ
[
w (φ′, g′, B′)
n (φ, g,B)

] 1
ψ−γ (

1 +
ι (u|φ, g,B)

θ (u|φ, g,B)

)

≤ e−γ(η
′+ε′)

[
c (u′ (u, s′|φ, g,B) , φ′, B′)

c (u|φ, g,B)

]− 1
ψ
[
u′ (u, s′|φ, g,B)

m (u|φ, g,B)

] 1
ψ−γ

. (A1.19)

Define E = {η′ + ε′ : equation (23) holds}. Also, let

ε(u, g′|φ, g,B) = inf E , ε(u, g′|φ, g,B) = sup E . (A1.20)

Let lu (u|φ, g,B) be the Lagrange multiplier for the promise-keeping constraint of the programming
problem (A1.1), then

∂

∂u
v (u|φ, g,B) = lu (u|φ, g,B) =

1

1− β

(
c (u|φ, g,B)

u

) 1
ψ

, (A1.21)

where the first equality is the envelope theorem, and the second equality is the first order condition,
(A1.7). Because v is concave, the above condition implies that c (u|φ, g,B) must be strictly increasing

4



in u. Thereore, the optimality condition (23) implies that on E , u′ (u, g′, η′, ε′|φ, g,B) must be
strictly decreasing in η′ + ε′. Clearly, the strict monotonicity of u′ (u, g′, η′, ε′|φ, g,B) implies
that u′ (u, g′, η′, ε′|φ, g,B) = λū (φ′, g′, B′) if η′ + ε′ = ε(u, g′|φ, g,B) and u′ (u, g′, η′, ε′|φ, g,B) =
u∗ (φ′, g′, B′) if η′ + ε′ = ε(u, g′|φ, g,B).

First, ∀η′ + ε′ < ε(u, g′|φ, g,B), we must have u′ (u, g′, η′, ε′|φ, g,B) = λū (φ′, g′, B′). Otherwise,
none of the equations, (23), (A1.18), or (A1.19) can hold. Similarly, ∀η′ + ε′ > ε(u, g′|φ, g,B), we
must have u′ (u, g′, η′, ε′|φ, g,B) = u∗ (φ′, g′, B′).

Second, to complete the proof of Part 1 and 2 of Proposition 1, we need to show that
∀η′ + ε′ ∈ (ε(u, g′|φ, g,B), ε(u, g′|φ, g,B)), condition (23) must hold. It is enough to show
u′ (u, g′, η′, ε′|φ, g,B) ∈ (λū (φ′, g′, B′) , u∗ (φ′, g′, B′)). This can be proved by contradiction. Suppose
η′+ε′ ∈ (ε(u, g′|φ, g,B), ε(u, g′|φ, g,B)) and u′ (u, g′, η′, ε′|φ, g,B) = λū (φ′, g′, B′), then the fact that
equation (23) holds at ε(u, g′|φ, g,B) implies that (note that η′ + ε′ < ε(u, g′|φ, g,B))

[
x (φ′, g′, B′)
x (φ, g,B)

]− 1
ψ
[
w (φ′, g′, B′)
n (φ, g,B)

] 1
ψ−γ (

1 +
ι (u|φ, g,B)

θ (u|φ, g,B)

)

< e−γ(η
′+ε′)

[
c (λū (φ′, g′, B′) , φ′, B′)

c (u|φ, g,B)

]− 1
ψ
[
λū (φ′, g′, B′)
m (u|φ, g,B)

] 1
ψ−γ

,

which is a contradiction to condition (A1.18). Similarly, one can show that u′ (u, g′, η′, ε′|φ, g,B) =
u∗ (φ′, g′, B′) cannot be true either.

To prove Part 3 of Proposition 1, note that because the value function is strictly concave
in u, the Lagrange multiplier ιu (u|φ, g,B) must be strictly increasing in u. The first-order
condition with respect to u′ (u, g′, η′, ε′|φ, g,B) in the programming problem (A1.1) then implies that
u′ (u, g′, η′, ε′|φ, g,B) must be strictly increasing in u as well. Given constraint (14), the monotonicity
of θ (u|φ, g,B) with respect to u then follows directly from the u′ (u, g′, η′, ε′|φ, g,B) is increasing
with respect to u and the fact that v (u′|φ′, g′, B′) is strictly decreasing in u′.

A1.3 Proof of Proposition 2

Proposition 2 follows directly from the lemma below, which provides the details for the construction
of the equilibrium in the stochastic economy from a given equilibrium of the deterministic economy
with a modified discount rate.

Lemma 4. Suppose gt is i.i.d. over time and f ( ·| g) does not depend on g. Suppose there exists an
equilibrium in the equivalent deterministic economy with modified discount rate. An equilibrium of the
stochastic economy can be constructed as follows.

i) The SDF is given by equation (24) in Proposition 2.

ii) Workers’ outside option and utility upon employment are given by:

ū (φ, g,B) = ̂̄u (φ,B) , u∗ (φ, g,B) = û∗ (φ,B) ,

respectively, where ̂̄u (φ,B) and û∗ (φ,B) are the corresponding equilibrium quantities in the
equivalent deterministic economy with a modified discount rate.

iii) The consumption share of capital owners is

x (φ, g,B) = x̂ (φ,B) ,
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where x̂ (φ,B) is the capital owner’s consumption share in the equivalent deterministic economy
with a modified discount rate.

iv) The value function and policy functions of the optimal contracting problem are given by

v (u|φ, g,B) = v̂ (u|φ,B) , c (u|φ, g,B) = ĉ (u|φ,B) ,

θ (u|φ, g,B) = θ̂ (u|φ,B) , u′ (u, g′, ε′|φ, g,B) = û′ (u, ε′|φ,B) .

v) The law of motion for aggregate state variables (φ,B) is the same as that in the equivalent
deterministic economy with a modified discount rate.

Proof. To prove that the proposed allocations and prices constitutes an equilibrium, we use Lemma
3 to verify the equilibrium conditions. First, we show that the proposed stochastic discount factor is
consistent with capital owners’ consumption and utility process. Given capital owner’s consumption
and utlity in the stochastic economy, using equation (19),

Λ (g′|φ, g,B) = βe−γg
′
[
x̂ (φ′, B′)
x̂ (φ,B)

]− 1
ψ


 w (φ′, B′)
(
E
[
e(1−γ)g′ŵ1−γ (φ′, B′)

]) 1
1−γ




1
ψ−γ

The utility w (φ′, B′) is deterministic and the above can be written as

Λ (g′|φ, g,B) = βe−γg
′
[
x̂ (φ′, B′)
x̂ (φ,B)

]− 1
ψ (

E
[
e(1−γ)g′

]) γ− 1
ψ

1−γ
= β̂

[
x̂ (φ′, B′)
x̂ (φ,B)

]− 1
ψ e−γg

′

E
[
e(1−γ)g′

] . (A1.22)

Given the consumption policy in the deterministic economy, the SDF in the deterministic economy
reduces to a risk-free discount rate R (φ,B) with

1

R (φ,B)
= β̂

[
x (φ′, B′)
x (φ,B)

]− 1
ψ

. (A1.23)

Combing equations (A1.22) and (A1.23), it is clear that the SDF defined in (24) is consistent with
capital owners’ consumption in the stochastic economy.

Next, we show that the proposed value function and policy functions also solve the optimal
contracting problem in the stochastic economy. It is enough to show that the value function of the
deterministic economy is also a fixed point of the Bellman operator implied by the optimal contracting
problem P1. Given that the two economies have the same workers’ outside options ū (φ, g,B) and

that β̂ = β
(
E
[
e(1−γ)g′

]) 1− 1
ψ

1−γ
, it is easy to see that constraints (11), (12), and (13) are identical in

both economies. Given v (u|φ,B) the term

ˆ
Λ (g′|φ, g,B) eg

′+η′+ε′v (u′ (s′) |φ′, g′, B′) Ω(ds′|g)
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can be written as

1

R (φ,B)

∑
π (g′)

ˆ
e−γg

′

E
[
e(1−γ)g′

]eg′+ε′+η′v (u′ (ε′, η′) |φ′, B′) f (ε′ + η′) dε′dη′

=
1

R (φ,B)

ˆ E
[
e(1−γ)g′

]

E
[
e(1−γ)g′

] eε′+η′v (u′ (ε′, η′) |φ′, B′) f (ε′ + η′) dε′dη′

=
1

R (φ,B)

ˆ
eε
′+η′v (u′ (ε′, η′) |φ′, B′) f (ε′ + η′) dε′dη′,

which is identical to that in the deterministic economy. Therefore, v (u|φ, g,B) = v̂ (u|φ,B) is also
the value function of the optimal contracting problem in the stochastic economy.

Finally, conditions 3 and 4 in Lemma 3 also hold, because these requirements are identical in the
deterministic economy and the stochastic economy. This completes the proof.

A2 Proofs of Propositions 3 and 4

A2.1 Equilibrium in the simple economy

In this section, we start with deriving explicit expressions for several equilibrium objects to prepare
for the proofs of Propositions 3 and 4. We first introduce some notation.

Notation In the simple model in Section 4, we assume that the worker-specific shock follows a
negative exponential distribution. The density of a negative exponential distribution with parameter
ξ takes the following form:

f (ε| gL) =
0 ε > εMAX

ξeξ(ε−εMAX) ε ≤ εMAX .
(A2.1)

For later reference, we note that the moments of f (ε| gL) can be easily computed as

ˆ ε

−∞
eθtf ( t| gL) dt =

ξ

ξ + θ
e−ξεMAX+(θ+ξ)ε for ξ + θ > 0. (A2.2)

Equation (A2.2) shows that the assumption E [eε] = 1 amounts to a parameter restriction that
εMAX = ln 1+ξ

ξ .

In the simple economy illustrated in figure 1, we let xH ≡ x (gH) and xL ≡ x (gL) denote capital
owners’ consumption share and wH ≡ w (gH) and wL ≡ w (gL) denote their normalized utility at node
H and L, respectively.

In solving the optimal contracting problem, it is more convenient to represent policy functions
and value functions as functions of the period-0 promised utility u0. For an arbitrary u0, we use
uH (u0) ≡ u′ (u0, gH), and uL (u0, ε

′) ≡ u′ (u0, gL, ε
′) to denote the normalized promised utility

for a worker with initial promised utility u0 at nodes H and L, respectively. We use c0 (u0),
cH (u0) ≡ c (uH (u0)| gH), and cL (u0, ε

′) = c (uL (u0, ε
′)| , gL) for workers’ consumption policy at

nodes 0, H, and L, respectively. Similarly, vH (u0) ≡ v (uH (u0)| gH), vL (u0, ε
′) ≡ v (uL (u0, ε

′)| gL),
θH (u0) ≡ θ (uH (u0)| gH) and θL (u0, ε

′) ≡ θ (uL (u0, ε
′)| gL) are value functions and policy functions

at note H and L, respectively. We also denote εL (u0) ≡ ε (u0, gL) as the lowest level of realization of
the ε′ shock such that the limited commitment constraint does not bind at node L.

7



In addition, let uFBH and uFBL denote the utility-to-consumption ratio of an agent who consumes
the aggregate consumption in state gH and gL, respectively. That is, they are the normalized utility
associated with full risk sharing. The first best levels, uFBH and uFBL are determined by

uFBH =
(
egHuFBH

)β
uFBL =

(
egLuFBL

)β
.

Also, we use uCDL to denote the normalized utility of an agent in an economy without risk sharing.
That is, it is utility-consumption ratio of an agent who consumes yt every period:

uCDL =

(ˆ [
e{ε′+gL}uCDL

]1−γ
f(ε′|gL)dε

) β
1−γ

. (A2.3)

It is straightforward to show that as γ → 1 + ξ, uCDL → 0. We solve the general equilibrium in the
simple economy by backward induction. We first solve the value functions and policy functions at
nodes H and L in period 1. In the second step, we analyze the optimal contracting problem in period
0 for an arbitrary promised utility u0. Finally, we impose market clearing to solve for the equilibrium
stochastic discount factor.

Value functions at nodes H and L The following lemma characterizes the value functions at
nodes H and L in period 1.

Lemma 5. (Value function in period 1)

The firm’s value function at nodes H and L are give by

v (u| gH) = 1− c (u| gH) +
β

1− β xH − a ln

[
1 +

βxH
a (1− β)

]
, and (A2.4)

vL (u| gL) = 1− c (u| gL) +
β

1− β xL − a ln

[
1 +

βxL
a (1− β)

]
, (A2.5)

respectively, where the consumption policies are given by

c (u| gH) =
(
αegHuFBH

)− β
1−β u

1
1−β , c (u| gL) =

(
αΥegLuCD

)− β
1−β u

1
1−β ,

and the effort choices are

θH = 1− a

a+ β
1−βxH

, θL = 1− a

a+ β
1−βxL

. (A2.6)

Proof. Here, we only provide details for the deviation of the value function at node H. The value
function at node L can be computed in the same way. At node H, the optimal contracting problem
is written as

v (u| gH) = max
c,θ,u′

{
1− c−A (θ) + θ

1

RH
egHv2,H (u′)

}
(A2.7)

subject to : u = c1−β (egHu′)
β

u′ = αuFBH

v2,H (u′) ≥ 0

A′ (θ) =
1

RH
egHv2,H (u′)

where we use v2,H (u′) for the value function in period 2. Because there is no aggregate uncertainty
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in period 2, we replace the stochastic discount factor by a risk-free discount rate, 1
RH

. The absence of
idiosyncratic shocks and the fact that workers consume α fraction of their output imply that workers’
utility is α times the utility of a representative consumer, that is u′ = αuFBH . Note also, because the
firm always receive 1−α fraction of yt after period 2, the limited commitment constraint v2,H (u′) ≥ 0
does not bind.

To derive a close-form solution for vH (u), we first note that v2,H (u′) = 1−α
1−β . From period 2

and on, capital owner’s consumption and firms’ cash flow are both proportional to aggregate output.
Under the assumption of unit elasticity, the price-to-dividend ratio of the firm’s cash flow is 1

1−β .

Because the firm receive 1− α fraction of yt, the ratio of firm value normalized by yt is 1−α
1−β .

Second, because capital owner’s consumption share is xH in period 1 and 1 − α in period 2, the

discount factor is 1
RH

= β
[

1−α
xH

egH
]−1

. Therefore, the value function can be written as

vH (u) = 1− c−A (θ) + θ
β

1− β xH . (A2.8)

The consumption policy can be backed out from the promise-keeping constraint u = c1−β (egHu′)β .
In addition, given then functional form of A (θ), the optimal effort θ can be solved from the incentive
constraint, A′ (θ) = β

1−βxH , which gives (A2.6). Replacing θ in (A2.8) with the optimal policy, we

obtain the representation of the value function in (A2.4).

The optimal contracting problem at node L has a similar structure:

v (u| gL) = max
c,θ,u′(ε′)

{
1− c−A (θ) + θ

1

RL

ˆ ∞
−∞

egL+ε′v2,L (u′ (ε′)) f (ε′| gL) dε′
}

subject to : u = c1−β
{ˆ ∞
−∞

[
egL+ε′u′ (ε′)

]1−γ
f (ε′| gL) dε′

} β
1−γ

u′ (ε′) = αuCDL

v2,L (u′ (ε′)) ≥ 0

A′ (θ) =
1

RL
egL
ˆ ∞
−∞

v2,L (u′ (ε′)) f (ε′| gL) dε′.

The above problem can be greatly simplified by noting that v2,L (u′ (ε′)) = 1−α
1−β and u′ (ε′) = αuCDL

do not depend on ε′. Also, we define

Υ =

{ˆ ∞
−∞

e(1−γ)ε′f (ε′| gL) dε′
} 1

1−γ
, (A2.9)

so that

{´∞
−∞

[
eε
′
u′ (ε′)

]1−γ
f (ε′| gL) dε′

} 1
1−γ

= αuCDL Υ. The rest of the proof can be completed by

following the same steps in the solution of (A2.7).

At node L, limited commitment on firm side requires that vL (u) ≥ 0. Therefore, by equation
(A2.5), the maximum amount of consumption that the firm can promise to deliver to a worker at
node L is 1−A (θL) + θL

β
1−βxL, which we will denote as cMAX

L . Recall that for a worker with initial

promised utility u0, εL (u0) is the lowest level of realization of the ε′ shock such that the limited
commmitment constraint does not bind at node L. We must have, for all u0,

cL (u0, εL (u0)) = 1 +
β

1− β xL − a ln

[
1 +

βxL
a (1− β)

]
. (A2.10)
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We now turn to the optimal contracting problem as node 0.

Optimal contracting at node 0 We first prove the following lemma that uses the optimal risk
sharing condition (23) to relate the marginal rate of substitution of a marginal worker whose limited
commitment constraint is just about to bind to that of the capital owners.

Lemma 6. (FOC for the marginal agent)

Given the consumption share of the capital owners, xH and xL, for all u0, the normalized
consumption of the marginal worker with ε1 =εL (u0) must satisfy:

cH (u0)

e(1+τ)εL(u0)cL (u0, εL (u0))

[
uFBL k (θH)

ΥuCDL k (θL)

]τ
=
xH
xL

, (A2.11)

where we denote

k (θ) =
[
θ + (1− θ)λ1−γ] 1

1−γ , (A2.12)

τ = β(γ−1)
1+(1−β)(γ−1) , and Υ is defined in (A2.9).

Proof. By Proposition 1, the optimal risk sharing condition (23) must hold with equality for the
marginal worker with the realization of εL (u0) at node L. Comparing the optimal risk-sharing
conditions for consumption at node H and at L, we have

[
cH (u0)

eεL(u0)cL (u0, εL (u0))

]−1 [
uH (u0)

eεL(u0)uL (u0, εL (u0))

]1−γ
=

[
xH
xL

]−1 [
wH
wL

]1−γ
. (A2.13)

We can use the promise-keeping constraint to represent continuation utilities as functions of
consumption. For capital owners,

wH = x1−β
H nβH , where nH = (1− α) egHuFBH ,

wL = x1−β
L nβL, where nL = (1− α) egLuFBL , (A2.14)

where the computation of continuation utility nH and nL uses the fact that capital owners are not
exposed to idiosyncratic risks and that together they consume 1 − α fraction of aggregate output.
Because workers are not exposed to idiosyncratic risks at node H and consume α fraction of aggregate
output, their continuation utility at node H can be computed using

uH (u0) = [cH (u0)]
1−β

mβ
H , where mH = αuFBH egHk (θH) , (A2.15)

where k (θ) is defined in (A2.12). At node L, workers consume αyt for t = 2, 3, . . .. In period
2, following node L, a worker stays employed with probability θL, in which case his output is
y2 = y1e

gL+ε′ . With probability 1 − θL, a worker loses 1 − λ fraction of human capital and his
output is y2 = λy1e

gL+ε′ . Therefore, the certainty equivalent for a worker at node L is

mL =

{ˆ ∞
−∞

[
eg
′+ε′

(
θLαu

CD
L + (1− θL)λαuCDL

)]1−γ
f (ε′| gL) dε′

} 1
1−γ

= αΥuCDL egLk (θL) , (A2.16)

where we define Υ ∈ (0, 1) as in (A2.9). Therefore, the normalized utility of the marginal agent at
node L can be written as

uL (u0, εL (u0)) = [cL (u0, εL (u0))]
1−β

mβ
L, where mL = αΥuCDL egLk (θL) . (A2.17)
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Now we use expressions in (A2.14) and (A2.17) to replace the continuation utilities in (A2.13) and
simplify to get

[
cH (u0)

e[1+τ ]εL(u0)cL (u0, εL (u0))

]−Ω [
ΥuCDL k (θL)

uFBL k (θH)

]−β(1−γ)

=

[
xH
xL

]−Ω

, (A2.18)

where to simplify notation, we denote

Ω ≡ 1 + (1− β) (γ − 1) > 0, and τ ≡ β (γ − 1)

Ω
. (A2.19)

We can therefore obtain (A2.11) by raising both sides of equation (A2.13) to their − 1
Ω th power.

Next, we provide a lemma that links the consumption of a marginal worker to the expected
consumption of an average worker at node L.

Lemma 7. (Expected worker consumption at node L)

Given the consumption share of the capital owners, xH and xL, the expected consumption of a
worker with promised utility u0 at node L is given by:

E
[
eε
′
cL (u0, ε

′)
]

= e(1+τ)εL(u0)cL (u0, εL (u0)) Φ (εL (u0)) , (A2.20)

for all u0, where the function Φ (ε) is defined as

Φ (ε) =
ξ

ξ − τ e
−τεMAX − ξ (1 + τ)

(1 + ξ) (ξ − τ)
e−ξεMAX+(ξ−τ)ε. (A2.21)

Proof. Note that ∀ε′ ≤ εL (u0), the limited commitment constraint binds, and cL (u0, ε
′) =

cL (u0, εL (u0)). Therefore, the expected consumption of a worker with promised utility u0 at node
L can be computed as

ˆ εL(u0)

−∞
eε
′
cL (u0, εL (u0)) f (ε′| gL) dε′ +

ˆ εMAX

εL(u0)

eε
′
cL (u0, ε

′) f (ε′| gL) dε′. (A2.22)

To compute cL (u0, ε
′), note that the first order condition (23) implies that for all ε′ ≥ εL (u0),

e−γε′ [cL (u0, ε
′)]
−1

[uL (u0, ε
′)]

1−γ
= e−γεL(u0) [cL (u0, εL (u0))]

−1
[uL (u0, εL (u0))]

1−γ
. (A2.23)

We can compute uL (u0, ε
′) as:

uL (u0, ε
′) = c1−βL (u0, ε

′)mβ
L, (A2.24)

where the expression of mL is given in equation (A2.16). Equations (A2.23) and (A2.24) together
imply

e−γε
′
[cL (u0, ε

′)]
−1+(1−γ)(1−β)

= e−γεL(u0) [cL (u0, εL (u0))]
−1+(1−γ)(1−β)

.

Raising both sides of the above equation to the − 1
Ω th power and using the definition of Ω and τ

in (A2.19), we have, for all ε ≥ εL (u0),

eε
′
cL (u0, ε

′) = e−τε
′
e(1+τ)εL(u0)cL (u0, εL (u0)) . (A2.25)
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Now, we compute the first term in the integral in (A2.22) as:

ˆ εL(u0)

−∞
eε
′
cL (u0, εL (u0)) f (ε′| gL) dε′ = cL (u0, εL (u0))

ˆ εL(u0)

−∞
eε
′
f (ε′| gL) dε′

=
ξ

1 + ξ
e−ξεMAX+(1+ξ)εL(u0)cL (u0, εL (u0)) ,(A2.26)

and the second term as
ˆ εMAX

εL(u0)

eε
′
cL (u0, ε

′) f (ε′| gL) dε′

= e(1+τ)εL(u0)cL (u0, εL (u0))

ˆ εMAX

εL(u0)

e−τε
′
f (ε′| gL) dε

= e(1+τ)εL(u0)cL (u0, εL (u0))
ξ

ξ − τ
[
e−τεMAX − e−ξεMAX+(ξ−τ)εL(u0)

]
(A2.27)

We obtain equation (A2.20) by summing up (A2.26) and (A2.27).

Lemma 6 is the optimal risk sharing condition that equalizes the marginal rate of substitution
of workers and capital owners across the two states in period 1. The next lemma provides another
first-order condition that links the marginal rate of substitution of capital owners and workers across
time. Together Lemma 6 and Lemma 8 below completely characterize optimal risk sharing conditions.

Lemma 8. (Optimal risk sharing)

Optimal risk sharing requires that for all u0,

[
xH

cH (u0)

]1+(1−β)(γ−1)

=

[
x0

c0 (u0)

] [
n̄0 (xH , xL)

m̄0 (u0)

]γ−1

, (A2.28)

where

n̄0 (xH , xL) =

[
π
(
e(1+β)gHx

(1−β)
H

(
uFBH

)β)1−γ
+ (1− π)

(
e(1−γ)gLx

(1−β)
L

(
uFBL

)β)1−γ] 1
1−γ

,

and

m̄0 (u0) =


 π

(
e(1+β)gH c1−βH

(
uFBH k (θH)

)β)1−γ
+

(1− π) e(1−γ)gL
[
e(1+τ)εL(u0)cL (u0, εL (u0))

](1−β)(1−γ) { 1
αmL

}β(1−γ)
Ψ (εL (u0))




1
1−γ

,

(A2.29)
where Ψ (ε) is given by:

Ψ (ε) =

{
ξ

ξ − τ e
−τεMAX − ξ (1− γ + τ)

(ξ − τ) (ξ + 1− γ)
e−ξεMAX+(ξ−τ)εL(u0)

}
. (A2.30)

Proof. The optimal risk sharing condition implies that

[
cH (u0)

c0

]−1 [
uH (u0)

m0

]1−γ
=

[
xH
x0

]−1 [
wH
n0

]1−γ
. (A2.31)
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Using equation (A2.14),

wH = x1−β
H

[
(1− α) egHuFBH

]β
, wL = x1−β

L

[
(1− α) egLuFBL

]β
, and

n0 =
[
π (egHwH)

1−γ
+ (1− π) (egLwL)

1−γ
] 1

1−γ
. (A2.32)

To calculate workers’ utility, use (A2.15) to obtain

uH (u0) = [cH (u0)]
1−β [

αuFBH egHk (θH)
]β
. (A2.33)

Using equations (A2.32) and (A2.33) to replace the relevant terms in (A2.31), we obtain equation
(A2.28). It remains to calculate workers’ certainty equivalent,

m0 =

{
π [egHuH (u0)]

1−γ
+ (1− π)

ˆ ∞
−∞

[
egL+ε′uL (u0, ε

′)
]1−γ

f (ε′| gL) dε′
} 1

1−γ
. (A2.34)

Note that for ε′ ≥ εL (u0), using equation (A2.23), we can write

[
eε
′
uL (u0, ε

′)
]1−γ

= [eε′cL (u0, ε
′)] e−γεL(u0) [cL (u0, εL (u0))]

−1
[uL (u0, εL (u0))]

1−γ

= [eε′cL (u0, ε
′)] e−γεL(u0) [cL (u0, εL (u0))]

−1+(1−β)(1−γ)
m
β(1−γ)
L ,

where the second equality uses (A2.17) to compute uL (u0, εL (u0)) as a function of consumption.
Therefore,

ˆ εMAX

εL(u0)

[
eε
′
uL (u0, ε

′)
]1−γ

f (ε′| gL) dε′

=

ˆ εMAX

εL(u0)

[eε′cL (u0, ε
′)] f (ε′| gL) dε′ × e−γεL(u0) [cL (u0, εL (u0))]

−1+(1−β)(1−γ)
m
β(1−γ)
L

=
ξ

ξ − τ
[
e−τεMAX − e−ξεMAX+(ξ−τ)εL(u0)

]
× e(1−γ+τ)εL(u0) [cL (u0, εL (u0))]

(1−β)(1−γ)
m
β(1−γ)
L

=
ξ

ξ − τ
[
e−τεMAX − e−ξεMAX+(ξ−τ)εL(u0)

] [
e(1+τ)εL(u0)cL (u0, εL (u0))

](1−β)(1−γ)

m
β(1−γ)
L ,(A2.35)

where the second equality uses the same calculation as in (A2.27) and the last equality uses the
definition of τ to simplify. For ε′ < εL (u0), the firm-side limited commitment constraint binds, and

[
eε
′
uL (u0, ε

′)
]1−γ

= e(1−γ)ε′ [uL (u0, εL (u0))]
1−γ

= e(1−γ)ε′ [cL (u0, εL (u0))]
(1−β)(1−γ)

m
β(1−γ)
L ,
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where the second equality applies equation (A2.17). Therefore,

ˆ εL(u0)

−∞

[
eε
′
uL (u0, ε

′)
]1−γ

f (ε′| gL) dε′

=

ˆ εL(u0)

−∞
e(1−γ)ε′f (ε′| gL) dε′ × [cL (u0, εL (u0))]

(1−β)(1−γ)
m
β(1−γ)
L

=
ξ

ξ + 1− γ e
−ξεMAX+(1−γ+ξ)εL(u0) × [cL (u0, εL (u0))]

(1−β)(1−γ)
m
β(1−γ)
L

=
ξ

ξ + 1− γ e
−ξεMAX+(ξ−τ)εL(u0) ×

[
e(1+τ)εL(u0)cL (u0, εL (u0))

](1−β)(1−γ)

m
β(1−γ)
L ,(A2.36)

where the last equality uses the definition of τ to simplify. Combining (A2.35) and (A2.36), we have

ˆ ∞
−∞

[
eε
′
uL (u0, ε

′)
]1−γ

f (ε′| gL) dε′

=
[
e(1+τ)εL(u0)cL (u0, εL (u0))

](1−β)(1−γ)

m
β(1−γ)
L Ψ (εL (u0)) , (A2.37)

where εL (u0) is defined in (A2.30). We obtain the expression (A2.29) by combing (A2.34) and
(A2.37).

General Equilibrium Unit measure of a single type of workers and market clearing at node 0,
node H, and node L implies u∗0 solves

c0 (u∗0) = 1− x0, cH (u∗0) = 1− xH , and E
[
eε
′
cL (u∗0, ε

′)
]

= 1− xL,

respectively. Note that equation (A2.10) implies

cL (u∗0, εL (u∗0)) = 1 +
β

1− β xL − a ln

[
1 +

βxL
a (1− β)

]
. (A2.38)

Using market clearing at node L and Lemma 7,

1− xL = e(1+τ)εL(u∗0)cL (u0, εL (u∗0)) Φ (εL (u∗0)) . (A2.39)

Combining (A2.38) and (A2.39), we have:

e(1+τ)εL(u∗0)Φ (εL (u∗0)) =
1− xL

1 + β
1−βxL − a ln

[
1 + βxL

a(1−β)

] . (A2.40)

Equations (A2.38) and (A2.40) together define cL (u0, εL (u∗0)) and εL (u∗0) as functions of xL. With
a bit abuse of notation, we denote these functions as cL (xL) and ε(xL).

Focusing on type-u∗0 agents, using Lemma 7, we can replace the term e(1+τ)εL(u∗0)cL (u∗0, εL (u∗0))
in equation (A2.11) by the following

e(1+τ)εL(u∗0)cL (u∗0, εL (u∗0)) = (1− xL) Φ (ε (xL))
−1
. (A2.41)

Therefore, the first order condition (A2.11) can be written as

Φ (ε (xL))

[
uFBL k (θH)

ΥuCDL k (θL)

]τ
=
xH
xL

1− xL
1− xH

. (A2.42)
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Also, using the marketing clearing condition to replace cH by 1− xH , and use (A2.41) to replace
e(1+τ)εL(u∗0)cL (u∗0, εL (u∗0)), we define workers’ certainty equivalent as a function of xH , xL, and ε
using (A2.29)

m̄0 (xH , xL, ε) =





π
[
e(1+β)gH (1− xH)

(1−β) (
uFBH k (θH)

)β]1−γ

+ (1− π)

[
e(1+β)gL

[
1−xL
Φ(ε)

](1−β) [
ΥuCDL k (θL)

]β
]1−γ

Ψ (ε)





1
1−γ

, (A2.43)

and the first order condition (A2.28) can be written as

[
xH

1− xH

]1+(1−β)(γ−1)

=

[
x0

1− x0

]−1 [
n̄0 (xH , xL)

m̄0 (xH , xL, ε (xL))

]1−γ
. (A2.44)

Give an inital condition of x0, equations (A2.42) and (A2.44) can be jointed solved for xH and xL.
Other equilibrium quantities can then be constructed analogously.

A2.2 Proof of Proposition 3

1. From the definition of uCDL in (A2.3), it is clear that as γ → 1 + ξ, uCDL → 0. Consider equation
(A2.42). It is straightforward to verify that Φ (ε) is strictly positive and bounded (see equation
(A2.21)). Also, both k (θH) and k (θL) are bounded. Therefore, as γ → 1 + ξ the left hand side
converges to∞, and we must have xH

xL
→∞. By continuity, there exists γ̂ ∈ (1, 1 + ξ) such that

xH
xL

> 1 if and only if γ > γ̂, as needed.

In addition, if γ = 1, then τ = 0. Using the definition of Φ (ε),

Φ (ε) = 1− 1

(1 + ξ)
e−ξ(εMAX−ε) < 1.

Therefore, we must have xH
xL

< 1.

2. The economy without moral hazard is a special case in which the parameter for cost of effort,
a = 0. We use θH (a) and θL (a) to denote policy functions with the understanding that they
are policy functions of the moral hazard economy if a > 0, and they stand for policy functions
in the economy without moral hazard if a = 0. Using our result from Part 1 of the proof, as
γ → 1+ξ, xHxL →∞. Because both xH and xL are bounded between [0, 1], we must have xL → 0.
Therefore, θL (a) → 0 by equation (A2.6). Also, equation (A2.44) implies that as γ → 1 + ξ,
m̄0 (xH (a) , xL (a) , ε (xL (a))) → 0; therefore, xH (a) → 0 as well. Therefore, as γ → 1 + ξ,
θH (a)→ 1− a

a+ β
1−β x

∗
H

. Consider equation (A2.42), for an arbitrary a,

[
k (θH (a))

k (θL (a))

]τ
=

[
θH (a) + (1− θH (a))λ1−γ

θL (a) + (1− θL (a))λ1−γ

] τ
1−γ

.

Suppose a > 0, then as γ → 1 + ξ, there exist ε > 0 such that

[
θH (a) + (1− θH (a))λ1−γ

θL (a) + (1− θL (a))λ1−γ

] τ
1−γ

→




1− a
a+ β

1−β x
∗
H(a)

+

(
1− a

a+ β
1−β x

∗
H(a)

)
λ−ξ

λ−ξ




− 1
ξ

βξ
1+ξ(1−β)

> 1+ε.

In addition, equation (A2.40) implies that as γ → 1 + ξ, xL → 0, and therefore, εL (a) → ε∗
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for all a, where ε∗ is such that e(1+τ)ε∗Φ (ε∗) = 1. Therefore, with a > 0, for γ close enough to
1 + ξ, we must have

Φ (εL (a))

[
uFBL k (θH (a))

ΥuCDL k (θL (a))

]τ
> Φ (εL (0))

[
uFBL

ΥuCDL

]τ
.

Equation (A2.42) implies that for γ close enough to 1 + ξ, xH
xL

> xH
xL

because as γ → 1 + ξ,
xL → 0 and xH → x∗H has a limit.

3. By Part 1 of the proposition, for γ large enough, xH > xL. The fact that θH > θL follows from
equation (A2.6).

Proof for the claim that Price-dividend ratio is procyclical Here we provide a proof for claim
in footnote 13. Consider first firm value at node H, (A2.4). Because there is no idiosyncratic shock
at node H, there is only one type of firm, and u = uH . Using the market clearing condition at node
H, 1− cH = xH . Therefore, in equilibrium,

vH (u∗0) = 1− cH (u∗0) +
β

1− β xH − a ln

[
1 +

βxH
a (1− β)

]

= xH +
β

1− β xH − a ln

[
1 +

βxH
a (1− β)

]

=
1

1− β xH − a ln

[
1 +

βxH
a (1− β)

]
.

At node L, firm value is given by eεvL (u∗0, ε). Using equation (A2.5),

vL (u∗0, ε) = 1− cL (u∗0, ε) +
β

1− β xL − a ln

[
1 +

βxL
a (1− β)

]
.

Note that
E [eεcL (u∗0, ε)] = 1− xL

by market clearing. Therefore,

E [eεvL (u∗0, ε)] = 1− E [eεcL (u∗0, ε)] +
β

1− β xL − a ln

[
1 +

βxL
a (1− β)

]

=
1

1− β xL − a ln

[
1 +

βxL
a (1− β)

]
.

Using our previous arguement, as γ → 1 + ξ, xH
xL
→∞. Therefore, for γ large enough, we must have

vH(u∗0)

E[eεvL(u∗0 ,ε)]
> 1, as needed.

A2.3 Proof of Proposition 4

Firm risk pass through Fixing u0, equation (A2.25) implies that ∀ε′ ≥ε(u0),

d ln [eεcL (u0, ε)]

dε
= −τ.
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For ε′ <ε(u0), the limited commitment constraint binds, and eεcL (u0, ε) = eεcL (u0, ε (u0)).
Therefore,

d ln [eεcL (u0, ε)]

dε
= 1

Combining the above two equations, we have

E

[
∂ ln [eεcL (u0, ε)]

∂ε

]
=

ˆ εL(u0)

−∞
f (ε′| gL) dε′τ +

ˆ εMAX

εL(u0)

f (ε′| gL) dε′

= e−ξ(εMAX−εL(u0)) − τ
[
1− e−ξ(εMAX−εL(u0))

]
.

Clearly, the average elasticity is increasing in εL (u0). Using the optimal risk sharing conditions
(A2.13) and (A2.28), we can show that εL (u0) is an increasing function of u0.

Cross section of expected returns To characterize the dependence of vH(u0)
E[eεvL(u0,ε)]

, note that in

general,

cH (u0) =
xH
xL

[
ξuCDL k (θL)

uFBL k (θL)

]τ
e(1+τ)εL(u0)cL

(
u0, εL (u0)

)

by Lemma 6 and
E [eεcL (u0, ε)] = e(1+τ)εL(u0)cL (u0, εL (u0)) Φ (εL (u0))

by Lemma 7. Because at ε = εL (u0), the limited commitment constraint, vL (u0, ε) = 0 binds,

cL (u0, εL (u0)) = 1 + β
1−βxL − a ln

[
1 + βxL

a(1−β)

]
by (A2.10). To simplify notation, we denote

ΓH = 1+ β
1−βxH−a ln

[
1 + βxH

a(1−β)

]
and ΓL = 1+ β

1−βxL−a ln
[
1 + βxL

a(1−β)

]
. We then write vH(u0)

E[eεvL(u0,ε)]
as

vH (u0)

E [eεvL (u0, ε)]
=

ΓH − φe(1+τ)εL(u0)

ΓL
{

1− e(1+τ)εL(u0)Φ (ε (u0))
} ,

where we denote φ = xH
xL

[
ξuCDL k(θL)

uFBL k(θL)

]τ
ΓL to simplify notation. By Proposition 1, ε (u0) is a strictly

increasing function of u0. Therefore, to prove Proposition 4, it enough to show

∂

∂ε

ΓH − φe(1+τ)ε

{
1− e(1+τ)εΦ (ε)

} > 0,

which is given by the following lemma.

Lemma 9. There exists γ̃ ∈ (1, 1 + ξ) such that γ > γ̃ implies that for all ε ∈ (−∞, εMAX),

∂

∂ε

[
ΓH − φe(1+τ)ε

1− e(1+τ)εΦ (ε)

]
> 0. (A2.45)

Proof. We can compute (A2.45) as :

∂

∂ε

[
ΓH − φe(1+τ)ε

1− e(1+τ)εΦ (ε)

]

=
−φe(1+τ)ε (1 + τ)

[
1− e(1+τ)εΦ (ε)

]
+
[
ΓH − φe(1+τ)ε

]
e(1+τ)ε [(1 + τ) Φ (ε) + Φ′ (ε)]

[
1− e(1+τ)εΦ (ε)

]2 .
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We focus on the numerator and simplify:

−φe(1+τ)ε (1 + τ)
[
1− e(1+τ)εΦ (ε)

]
+
[
ΓH − φe(1+τ)ε

]
e(1+τ)ε [(1 + τ) Φ (ε) + Φ′ (ε)]

= ΓH [(1 + τ) Φ (ε) + Φ′ (ε)]− φ
[
(1 + τ) + e(1+τ)εΦ (ε)

]

It is therefore enough to show

ΓH [(1 + τ) Φ (ε) + Φ′ (ε)]− φ
[
(1 + τ) + e(1+τ)εΦ (ε)

]
> 0 (A2.46)

Using the expression of Φ (ε), we can compute

(1 + τ) Φ (ε) + Φ′ (ε) = (1 + τ)
ξ

ξ − τ
[
e−τεMAX − e−λεMAX+(ξ−τ)ε

]

= (1 + τ)
ξ

ξ − τ e
−τεMAX

[
1− e−(ξ−τ)εMAX+(ξ−τ)ε

]

= (1 + τ)
ξ

1 + ξ
e−τεMAX

1 + ξ

ξ − τ
[
1− e−(ξ−τ)εMAX+(ξ−τ)ε

]

= (1 + τ) e−(1+τ)εMAX
1 + ξ

ξ − τ
[
1− e−(ξ−τ)(εMAX−ε)

]
> 0,

where the last line uses the fact εMAX = ln 1+ξ
ξ . Also, the second term in equation (A2.46) can be

written as

(1 + τ) + e(1+τ)εΦ′ (ε) = (1 + τ)

[
1− ξ

1 + ξ
e−λεMAX+(1+ξ)ε

]

= (1 + τ)
[
1− e−(1+ξ)(εMAX−ε)

]
.

Therefore, to prove (A2.46), it is enough to show that for all ε,

ΓHe
−(1+τ)εMAX

1 + ξ

ξ − τ
[
1− e−(ξ−τ)(εMAX−ε)

]
− φ

[
1− e−(1+ξ)(εMAX−ε)

]
> 0.

Because φ→ 0 as γ → 1 + ξ, we have ΓHe
−(1+τ)εMAX > φ for γ close enough to 1 + ξ. We complete

the proof by making the following observation

Define

f (ε) =
1 + ξ

ξ − τ
[
1− e−(ξ−τ)(εMAX−ε)

]

g (ε) = 1− e−(1+ξ)(εMAX−ε),

then f (ε) > g (ε) for all ε < εMAX . To see this, note that f (εMAX) = g (εMAX) = 0. Also,
f ′ (ε) < g′ (ε) for all ε < εMAX , because

f ′ (ε) = − (1 + ξ) e−(ξ−τ)(εMAX−ε)

g′ (ε) = − (1 + ξ) e−(1+ξ)(εMAX−ε).
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A3 Computational Algorithm

We describe our computation algorithm. The algorithm consists of an “outer loop”, in which we
iterate over the law of motion for aggregate states and an associated stochastic discount factor, and
an “inner loop”, in which we solve for the optimal contract.

1. Initialize the law of motion of x, Γx(g′|g, x). We use a log-linear functional form:

log x′ = a(g, g′) + b(g, g′) log x. (A3.1)

Given the law of motion of x, the SDF Λ (g′| g, x) is calculated using

Λ (g′| g, x) = β

[
x′ (g′|g, x) eg

′

x

]− 1
ψ
[
w (x′, g′) eg

′

n(g, x)

] 1
ψ−γ

,

where w(g, x) and n(g, x) are given by

w (g, x) =
[
(1− β)x1− 1

ψ + βn1− 1
ψ (g, x)

] 1

1− 1
ψ ,

n (g, x) =



κ

∑

g′

π (g′|g) e(1−γ)g′w1−γ (g′,Γx(g′|g, x)))





1
1−γ

.

2. The inner loop consists of using Γx(g′|g, x) and Λ(g′|g, x), to solve the value function v (u| g, x),
the worker-outside value u (g, x) and value of a new job u∗(g, x) along with the policy functions
c (u| g, x), θ(u|g, x) and u′ (u, s′| g, x) that solve the optimal contracting problem P1. We solve
Bellman equation by a modified value function iteration as appplying a standard value function
iteration is complicated by the presence of the occasionally binding constraints (12) and (13).
Our procedure borrows elements from endogenous grid method of Carroll (2006). We describe
it below

(a) Guess v(u|g, x) and c(u|g, x). These imply functions u∗(g, x) and u(g, x) using equations

v (u∗ (g, x)| g, x) = 0,

ū (g, x) =
[
(1− β) b1−

1
ψ + β [λm̄ (g, x)]

1− 1
ψ

] 1

1− 1
ψ ,

with

m̄ (g, x) =
(
κE
[
e(1−γ)g′

{
(1− χ)ū1−γ (g′, x(g′))

1−γ
+ χu∗1−γ (g′,Γx(g′|g, x))

}∣∣∣ g
]) 1

1−γ
.

We denote c(u∗(g, x)|g, x) and c(λu(g, x), g, x) by c∗(g, x) and c(g, x).

(b) Let {ε(u, g′|g, φ,B), ε(u, g′|g, φ,B)}g′ be the thresholds for η′+ε′ such that constraint (12)
and (13) bind for a worker with state u, aggregate states (φ, g,B) and next period for
aggregate shock g′ = gL. Define a grid EL × X ≡

{
(εL,0, x0),

(
εL,1, x0

)
, . . . ,

(
εL,nE , xnX

)}

with the understanding that εL(j) and x(j) are the entries in the jth element of the grid
EL ×X with j ∈ {1, 2, . . . , nE × nX} .

(c) For all j ∈ {1, 2, . . . , nE × nX}, we solve for
{
εg′(j), εg′(j)

}
g′

that are consistent with εL(j)

and the guess for functions v and c in step (a) using the following equations that need to
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hold for all g′

Λ (g′|g, x(j))

Λ (gL|g, x(j))
=

e−γ(εg′ (j))

e
−γ
(
εgL

(j)
)
[
c∗ (g′,Γx (g′|g, x(j)))

c∗ (gL,Γx (g′|g, x(j)))

]− 1
ψ
[
u∗ (g′,Γx (g′|g, x(j)))

u∗ (gL,Γx (g′|g, x(j)))

] 1
ψ−γ

and

Λ (g′|g, x(j))

Λ (gL|g, x(j))
=
e−γ(εg′ (j))

e−γ(εgL (j))

[
c (g′,Γx (g′|g, x(j)))

c (gL,Γx (g′|g, x(j)))

]− 1
ψ
[
u (g′,Γx (g′|g, x(j)))

u (gL,Γx (g′|g, x(j)))

] 1
ψ−γ

.

(d) Now we construct the policy function u′(s′|j) using :

u′(η′ + ε′|j) = u∗(g′,Γx (g′|g, x(j))) ∀η′ + ε′ < εg′(j)

u′(η′ + ε′|j) = λu(g′,Γx (g′|g, x(j))) ∀η′ + ε′ < εg′(j)

and for η′ + ε′ ∈
(
εg′(j), εg′(j)

)
use

e−γ(εg′ (j))

e−γ(η′+ε′)

[
c∗ (g′,Γx (g′|g, x(j)))

c (u′)

]− 1
ψ
[
u∗ (g′,Γx (g′|g, x(j)))

u′

] 1
ψ−γ

= 1

to solve out for u′.

(e) We compute c(j), θ(j) and ι(j) using

Λ (g′|g, x(j))

(
1 +

ι (j)

θ (j)

)
= e−γ(εg′ (j))

[
c∗ (g′,Γx (g′|g, x(j)))

c (j)

]− 1
ψ
[
u∗ (g′,Γx (g′|g, x(j)))

m (j)

] 1
ψ−γ

,

A′(θj) = κEgΛ (g′|g, x(j)) eg
′+η′+ε′v (u′ (s′|j)) ,

ι(j)A′′(θj) =

(
β

1− β

)
c(j)

1
ψm(j)γ−

1
ψEg

(
1

1− γ

)(
e(1−γ)(ε′+η′)

[
u1−γ(s′|j)− u1−γ (g′,Γx (g′|g, x(j)))

])
,

where certainty equivalent m(j) only depends on {u′(s′|g)}s′ and {u (g′,Γx (g′|g, x(j)))}g′ .
(f) Finally, we use the promise keeping constraint (11) to back out u(j) that is consistent with

c(j) and {u′(s′|g)}s′ and we use the objective function of the firm, the right hand side of
(10) to obtain vj :

u(j) =
[
(1− β) c(j)1− 1

ψ + βm(j)1− 1
ψ

] 1

1− 1
ψ

v(j) = 1− c(j)−A(θ(j)) + κθ(j)EgΛ (g′|g, x) eg
′+η′+ε′v (u′ (s′|j) |g′,Γx(g′|g, x))

(g) The guess for v(u|g, x) and c(u|g, x) are updated by interpolating values {uj , vj} and
{uj , cj} . We then iterate until the value function and consumption functions both converge
with a tolerance of 1e− 7 under a sup norm.

3. To check the accuracy in computing the optimal contract, we plot a version of Euler equation
errors in Figure A1. Fixing u, x, g and the aggregate state next period g′, we draw 1000
idiosyncratic shocks ε′ + η′ such that both agent and firm-side limited commitment constraints
are not binding. We then use the maximum absolute log10 ratio of worker’s MRS to owners’
MRS across these shocks as our measure of Euler Equation Error. We repeat this procedure for
different (u, x, g) and g′ combinations with values of (u, x) that are not on the grid points where
the value function is solved. The Euler equation errors computed this way has the magnitude
of -4, which suggests that our approximation is reasonable.

4. We now describe the outer loop where we use optimal policies to simulate the model and update
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Γx. The details of the simulation procedure are given below:

(a) Let φ (t) denote the summary measure at time t. In simulations, we approximate
the continuous distribution φ (t) by a finite-state distribution as follows. We choose

u
(t)
1 , u

(t)
2 , · · · , u(t)

N+1, where u
(t)
1 = λu (gt, xt) and u

(t)
N+1 = u∗ (gt, xt). A density φ is

characterized by a set of grid points {û [n] (t)}N+3
n=1 and corresponding weights {φ [n] (t)}N+3

n=1

such that

• û [1] and û [N + 1] are the boundaries where the limited commitment constraint binds:
û [1] = λu (gt, xt) and û [N + 1] = u∗ (gt, xt); û [N + 2] = u∗ (gt, xt) is the restarting
utility.

• {û [n]}n=2,3,···N are the interior points: û [j] ∈ (uj−1, uj), for j = 2, 3 · · ·N, are chosen
appropriately to minimize the approximation error.

• φ [1] and φ [N + 1] are the income shares of agents with a binding limited commitment
constraint at û [1] and û [N + 1], respectively.

• {φ [n]}n=2,3,···N are the income shares of agents in the interior.

• The mass on φ [N + 2] is the share of agents who (re)start at u∗ (φ, g), this include
both the newly employed and the new born.

• The mass φ [N + 3], which is the total human capital for the unemployed pool.

(b) Start with an initial distribution of u, denoted {φ0 (u)}.
(c) Having solved x0, use the law of motion of u′ (u, s′| g, x) to compute φ1. Here we describe

a general procedure to solve for {φ [n] (t+ 1) ; û [n] (t+ 1) ; xt+1}N+3
n=1 and Bt+1 given

{φ [n] (t) ; û [n] (t) ; xt}N+3
n=1 and Bt. Note that the assumed law of motion gives a natural

candidate for xt+1. We denote xt+1 = Γ (xt| gt, gt+1).

i. First, we approximate the distribution s ∼ f (ε+ η| g) by a finite dimensional

distribution such that
∑K
k fg [j] = 1 and

∑K
k e

skfg [j] = 1, for g = gH , gL.

ii. Given {φ [n] (t) , û [n] (t)}N+3
n=1 for period t, conditioning on the realization of aggregate

state gt+1, for each n = 1, 2, · · · , N+2, we compute {φt+1 [n, k]}n,k. The interpretation
is that φt+1 [n, k] is the total measure of income share that comes from agents with
û [n] (t) and with realization of εk, which is given by:

φt+1 [n, k] = (1− κ) (1− θ (û [n] (t) , gt))fgt+1
[k]φt [n] esk , k = 1, 2 . . . ,K.

The continuation utility of these agents is u′ ( û [n] (t) , gt+1, sk| gt, xt), a fact that we
will use below.

iii. We now compute {φt+1 [m]}m=1,2,...N+3 for the next period. First, compute the
measure on the grid points:

φt+1 [1] =
N+2∑

n=1

K∑

k=1

φt+1 [n, j] I{u′( û[n](t),gt+1,sk|gt,xt)≤λu(gt+1,xt+1)},

φt+1 [2] =

N+2∑

n=1

K∑

k=1

φt+1 [n, k] I{
u′( û[n](t),gt+1,sk|gt,xt)∈

(
u
(t+1)
1 ,u

(t+1)
2

)},

φt+1 [m] =
N+2∑

n=1

K∑

k=1

φt+1 [n, k] I{
u′( û[n](t),gt+1,sk|gt,xt)∈

[
u
(t+1)
m−1 ,u

(t+1)
m

)}, m = 3, . . . N

φt+1 [N + 1] =
N+2∑

n=1

K∑

k=1

φt+1 [n, k] I{u′( û[n](t),gt+1,sk|gt,xt)≥u∗(gt+1,xt+1)},
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Second, we compute the measure of all restarting agents, which include the newly
employed and the new born:

φt+1 [N + 2] = κ+ (1− κ)φt [N + 3]χ.

Finally, we compute the measure of the unemployed pool:

φt+1 [N + 3] = (1− κ)

{
λ
N+2∑

n=1

θ (û [n] (t) , gt)φt [n] + [1− χ]φt [N + 3]

}

iv. The interpretation is again that φ [1] and φ [N + 1] are the income shares of agents
with a binding limited commitment constraint at û [1] and û [N + 1], respectively, and
{φ [n]}n=2,3,···N are the income shares of agents in the interior. φ [N + 2] is the income
share of agents who enter the employment pool (which include newly employed and
the new born), and φt+1 [N + 3] is the share of agents in the unemployed pool.

v. We need to update the vector normalized utilities {û [n] (t+ 1)}N+2
n=1 . Clearly, we

should have û [1] (t+ 1) = λu (gt+1, xt+1), û [N + 1] (t+ 1) = u∗ (gt+1, xt+1) and
û [N + 2] (t+ 1) = u∗ (gt+1, xt+1). For m = 2, . . . , N , we choose û [m] (t+ 1) ∈[
u

(t+1)
m−1 , u

(t+1)
m

)
such that the resource constraint holds exactly for u ∈

[
u

(t+1)
m−1 , u

(t+1)
m

)
.

That is, we pick û [m] (t+ 1) to be the solution (denoted û) to

N+2∑

n=1

K∑

k=1

φt+1 [n, k] c
(
u′ ( û [n] (t) , gt+1, εj | gt, xt)

∣∣ gt+1, xt+1

)
I{
u′( û[n](t),gt+1,εk|gt,xt)∈

[
u
(t+1)
m−1 ,u

(t+1)
m

)}

= c( û| gt+1, xt+1)φt+1 [m] .

vi. Now, we compute Bt+1:

Bt+1 = (1− κ) [1− χ (gt+1)]Bt + λ [1− κ]
N+2∑

m=1

θ ( û [m] (t)| gt, xt) bφt [m]

(d) Up to now, we have described a procedure to simulate forward the economy. This allows
us to compute the market clearing

{
xMC
t+1

}∞
t=0

as follows:

xMC
t+1 =

N+2∑

m=1

φt+1 [m]−
N+2∑

m=1

c( û [m] (t+ 1)| gt+1, xt+1)φt+1 [m]−Bt+1. (A3.2)

Given the sequence of {gt}Tt=1, we simulate the economy forward for T periods to obtain{
xMC
t

}T
t=0

. We divide the sample into four cases: gH → gH , gH → gL, gL → gH , gL → gL
and use regression to update the law of motion of x. We go back to step 1 to iterate. Note
the under the above procedure, given the sequence of {gt}Tt=1, the sequence of xt+1 that
is used for computing decision rules is complete determined by (A3.2). In the simulation,
we assume that xt+1 follows the perceived law of motion, based on which agent make their
decisions. We use the market clearing condition to update the actual law of motion of x
and iterate.

(e) We divide the sample into four cases: gH → gH , gH → gL, gL → gH , gL → gL and use
regressions (A3.1) to update the law of motion of x. We go back to step 1 to iterate until
the unconditional R2 approaches 99.9%.
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A4 Calculation of the replicating portfolio

First, we define p (u|φ, g,B) to be the present value of a worker’s consumption claim normalized by
Y h. That is, p (u|φ, g,B) satisfies

p (u|φ, g,B) = c (u|φ, g,B)

+κθ (u|φ, g,B)

ˆ
Λ (g′|φ, g,B) eg

′+η′+ε′p (u′|φ′, g′, B′) Ω(ds′|g).

Next, the price-to-dividend ratio of the aggregate stock market, denoted q (φ, g,B) can be computed
as:

q (φ, g,B) =

ˆ
v (u|φ, g,B)φ (du) .

Let ∆ be the number of shares and BY be the amount of risk-free bond in the replicating portfolio.
We denote the next period state variables as

φi = Γφ (gi|φ, g,B) , Bi = ΓB (gi|φ, g,B) , for i = H,L.

Also, denote the one-period risk-free interest rate as

Rf (φ, g,B) =
1

E [Λ (g′|φ, g,B)]
.

The replicating portfolio (∆,B) are jointly determined by the two equations, for i = H,L,

∆q (φi, gi, Bi)x (φi, gi, Bi) e
gi + BRf (φ, g,B) =

ˆ
p (u′ (u, gi, ε

′|φ, g,B)|φi, gi, Bi) f (ε′| gi) dε′.

The interpretation is the that the replicating portfolio (∆,B) pays the aggregate component of the
agent’s consumption in all future periods. Given (∆,B), the share of stocks can be computed as the
value of the stock as a fraction of the total value of the replicating portfolio:

∆C (u, g, φ) =
∆ [q (φ, g,B)− 1]x (φ, g,B)

∆ [q (φ, g,B)− 1]x (φ, g,B) + B
.

A5 More details on wage-pass-through and returns in the
cross section

In this section, we provide corroborating evidence for the empirical results in sections 6.2 and 6.3. As
a robustness for specification (29), we estimate

∆ log WageBillf,t+1 = αw + βw0 LaborSharef,t + β+
w1 max{∆ log Salesf,t, 0}

β−w1 min{∆ log Salesf,t, 0}+ γ+
w∆ max{log Salesf,t, 0} × LaborSharef,t

+ γ−w min{∆ log Salesf,t, 0} × LaborSharef,t + λwt. (A5.1)

The firm-side limited commitment binds with adverse firm-level shocks. This would imply that γ−w
or the coefficient on the negative part of sales growth should be positive and statistically significant.
In table 1, we verify this.

Next we estimate a version of (27) with total assets and book leverage as further controls. In table
2, we verify that the coefficient on labor leverage remains positive and statistically significant.
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Figure A1: Euler equation errors for g = gL and g′ = gL.
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Table 1: FIRM-LEVEL WAGE PASS-THROUGHS AND LABOR SHARES

Coefficients Using LS Using ELS

LogSales plus 0.69 0.55
(0.05) (0.04)

LogSales minus 0.13 0.12
(0.06) (0.04)

Labor share -0.02 -0.12
(0.01) (0.01)

Labor share × LogSales plus 0.00 0.1
(0.12) (0.06)

Labor share × LogSales minus 0.76 0.55
(0.12) (0.08)

Time Fixed Effects Yes Yes

Notes: The sample consist of firm-year observations from COMPUSTAT/CRSP merged files for the years 1959-2016.

In the column labeled “Using LS” we use labor share computed using (28), and in the column labeled “Using ELS” we

use the procedure described in Donangelo et al. (2016) and construct “extended labor share.” In both specifications,

labor shares are standardized and twice lagged, and standard errors are clustered at firm level.
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Table 2: FIRM-LEVEL RETURNS AND LABOR SHARES

Coefficients Using LS Using ELS

Labor share 1.24 0.85
(0.43) (0.20)

Leverage 0.63 1.17
(0.91) (0.35)

log Assets -1.06 -2.22
(0.43) (0.21)

Time Fixed
Effects

Yes Yes

Notes: The sample consist of firm-year observations from COMPUSTAT for the years 1959-2016. We follow Donangelo

et al. (2016) in the construction of firm labor share, the results of which are reported in the column labeled “Using LS”,

and the construction of extended labor share, the results of which are reported in the column labeled “Using ELS.” In

both specifications, labor shares are twice lagged, and standard errors are clustered at the firm level. Log Assets is the

logarithm of book value of assets and Leverage is defined as the ratio of long-term debt plus debt in current liabilities

divided by total assets.
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